
www.manaraa.com

University of Iowa University of Iowa

Iowa Research Online Iowa Research Online

Theses and Dissertations

Summer 2016

Distributed indexing and scalable query processing for interactive Distributed indexing and scalable query processing for interactive

big data explorations big data explorations

Gheorghi Guzun
University of Iowa

Follow this and additional works at: https://ir.uiowa.edu/etd

 Part of the Electrical and Computer Engineering Commons

Copyright 2016 Gheorghi Guzun

This dissertation is available at Iowa Research Online: https://ir.uiowa.edu/etd/2087

Recommended Citation Recommended Citation
Guzun, Gheorghi. "Distributed indexing and scalable query processing for interactive big data
explorations." PhD (Doctor of Philosophy) thesis, University of Iowa, 2016.
https://doi.org/10.17077/etd.ghz38eku

Follow this and additional works at: https://ir.uiowa.edu/etd

 Part of the Electrical and Computer Engineering Commons

https://ir.uiowa.edu/
https://ir.uiowa.edu/etd
https://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F2087&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=ir.uiowa.edu%2Fetd%2F2087&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.17077/etd.ghz38eku
https://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F2087&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=ir.uiowa.edu%2Fetd%2F2087&utm_medium=PDF&utm_campaign=PDFCoverPages

www.manaraa.com

DISTRIBUTED INDEXING AND SCALABLE QUERY PROCESSING FOR

INTERACTIVE BIG DATA EXPLORATIONS

by

Gheorghi Guzun

A thesis submitted in partial fulfillment of the
requirements for the Doctor of Philosophy

degree in Electrical and Computer Engineering
in the Graduate College of

The University of Iowa

August 2016

Thesis Supervisor: Assistant Professor Guadalupe M. Canahuate

www.manaraa.com

© Copyright by

Gheorghi Guzun

2016

All Rights Reserved

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise, to republish, to post on
servers or to redistribute to lists, requires prior specific permission.

www.manaraa.com

Graduate College
The University of Iowa

Iowa City, Iowa

CERTIFICATE OF APPROVAL

PH.D. THESIS

This is to certify that the Ph.D. thesis of

Gheorghi Guzun

has been approved by the Examining Committee for
the thesis requirement for the Doctor of Philosophy de-
gree in Electrical and Computer Engineering at the
August 2016 graduation.

Thesis Committee:
Guadalupe M. Canahuate,
Thesis Supervisor

Er-Wei Bai

Jon G. Kuhl

Mona K. Garvin

Ricardo Mantilla

www.manaraa.com

To Sebastian

ii

www.manaraa.com

ACKNOWLEDGEMENTS

I would like to thank my advisor, Professor Guadalupe Canahuate who sup-

ported and guided me throughout my PhD. She is an extraordinary researcher,

and a wellspring of ideas. Her invaluable input always helped me to finish the

next task. Without her guidance, this dissertation would have not been brought to

fruition.

I would also like to extend my gratitude to Professor Jon Kuhl, with whom I

was lucky to work alongside, and whose courses I attended with great enthusiasm.

His passion for teaching, work ethic, and challenging questions take Education

to the next level. I want to acknowledge the other members of my dissertation

committee, and thank them for their feedback after my first presentation of the

research proposal: Dr. Ricardo Mantilla, Dr. Er-Wei Bai and Dr. Mona Garvin.

Many parts of this dissertation are a result of collaboration with other peo-

ple. My first project on bitmap compression was a joint work with David Chiu, Ja-

son Sawin and my advisor Guadalupe Canahuate. Joel Tosado worked alongside

with me on various projects while developing the distributed bit-vector indexing

and query systems, such as K-NN queries, and query approximation through slice

shedding.

I would like to thank Cathy Kern and Dina Blanc who always went out of

their way to help me with things within and outside the ECE Department.

Last but not least, I am thankful my family and friends. To my lovely wife

iii

www.manaraa.com

Africa who always supports and believes in me. To my parents who raised me,

taught me the good values, and are always there for me.

iv

www.manaraa.com

ABSTRACT

The past few years have brought a major surge in the volumes of collected

data. More and more enterprises and research institutions find tremendous value

in data analysis and exploration. Big Data analytics is used for improving cus-

tomer experience, perform complex weather data integration and model predic-

tion, as well as personalized medicine and many other services.

Advances in technology, along with high interest in big data, can only in-

crease the demand on data collection and mining in the years to come. As a re-

sult, and in order to keep up with the data volumes, data processing has become

increasingly distributed. However, most of the distributed processing for large

data is done by batch processing and interactive exploration is hardly an option.

To efficiently support queries over large amounts of data, appropriate indexing

mechanisms must be in place.

This dissertation proposes an indexing and query processing framework

that can run on top of a distributed computing engine, to support fast, interactive

data explorations in data warehouses. Our data processing layer is built around

bit-vector based indices. This type of indexing features fast bit-wise operations

and scales up well for high dimensional data. Additionally, compression can be

applied to reduce the index size, and thus utilize less memory and network com-

munication.

Our work can be divided into two areas: index compression and query pro-

v

www.manaraa.com

cessing. Two compression schemes are proposed for sparse and dense bit-vectors.

The design of these encoding methods is hardware-driven, and the query pro-

cessing is optimized for the available computing hardware. Query algorithms are

proposed for selection, aggregation, and other specialized queries. The query pro-

cessing is supported on single machines, as well as computer clusters.

vi

www.manaraa.com

PUBLIC ABSTRACT

The past few years have brought a major surge in the volumes of collected

data. More and more enterprises and research institutions find tremendous value

in data analysis and exploration. Big Data analytics is used for improving cus-

tomer experience, perform complex weather data integration and model predic-

tion, as well as personalized medicine and many other services.

Advances in technology, along with high interest in big data, can only in-

crease the demand on data collection and mining in the years to come. As a result,

data processing has become increasingly distributed, in order to keep up with the

data volumes. However, most of the distributed processing for large data is done

by batch processing of text data. This means that the answers are often available

only after some time when inquiring the data. Interactive exploration is hardly an

option over big data, and that limits the value of the information. To efficiently

support queries over large amounts of data, appropriate indexing mechanisms

must be pre-computed.

This dissertation proposes an indexing and query processing framework,

that can run on top of a distributed computing engine, to support fast, interactive

data explorations in data warehouses. Our data processing layer is built around a

bit-vector based index that enables for fast bit-wise operations and compression to

reduce memory and network bandwidth utilization.

We achieve these results by developing two compression schemes for sparse

vii

www.manaraa.com

and dense bit-vectors. The design of these encoding methods is hardware-driven,

and the query processing is optimized for the available computing hardware. We

propose query algorithms for selection and aggregation and other specialized que-

ries. The query processing is supported on single machines, as well as on map-

reduce systems.

viii

www.manaraa.com

TABLE OF CONTENTS

LIST OF TABLES . xi

LIST OF FIGURES . xii

LIST OF ALGORITHMS . xiv

CHAPTER

1 INTRODUCTION . 1

1.1 Motivation for scalable indexing in distributed settings 1
1.2 Indexing requirements . 2
1.3 Summary description of the proposed system 4
1.4 Dissertation plan . 6

2 BACKGROUND AND RELATED WORK 7

2.1 Bitmap index . 7
2.2 Bit-sliced index . 9
2.3 Compression of bit-vectors . 10

2.3.1 Word-Aligned Hybrid run-length code (WAH) 10
2.3.2 Word-aligned Bitmap Code (WBC) 11

2.4 Bit-vector based indices used in distributed environments 12

3 BIT-VECTOR COMPRESSION . 14

3.1 Compression and query performance analysis for word-aligned
bitmap compression methods . 16
3.1.1 Performance estimations . 22

3.2 Variable Aligned Length - VAL . 31
3.3 Hybrid compression for hard-to-compress bit-vectors 50

4 QUERY PROCESSING AND OPTIMIZATION 52

4.1 Bitwise operation optimization using hybrid compression 53
4.1.1 Query optimizer . 58
4.1.2 The Threshold Parameters α, β, and γ 60
4.1.3 Bit-Density Estimation . 62
4.1.4 Beyond bit-wise operations 68

4.2 Complex queries using Bit-sliced Indices (BSI) 73

ix

www.manaraa.com

4.2.1 Top-K Preference queries . 73

5 DISTRIBUTED BIT-SLICED INDEX . 79

5.1 Structure of the distributed BSI index 79
5.2 Partitioning of the BSI index . 83
5.3 Data encoding . 85

6 DISTRIBUTED QUERY PROCESSING . 88

6.1 Distributed top-k queries using BSI indexing 88
6.2 Distributed Nearest Neighbor queries using bit-vector indexing 90

6.2.1 K-NN queries using BSI indexing 90
6.2.2 Distributed K-NN queries using equality bitmap indexing 92
6.2.3 Extended kNN-based queries 92

6.3 Distributed aggregation using the BSI index 94
6.3.1 BSI tree reduction aggregation 94
6.3.2 BSI group-tree reduction aggregation 95

6.4 BSI two-phase slice mapping for distributed aggregations 99
6.5 Cost estimations for two-phase map-reduce BSI aggregation . . 102

6.5.1 Data shuffle estimation . 102
6.5.2 Time Complexity Analysis 105

6.6 Evaluation of the two-phase map-reduce distributed BSI aggre-
gation method . 107
6.6.1 Scalability of the proposed indexing and querying ap-

proach . 107
6.6.2 Evaluation of cost estimations 110
6.6.3 Comparison against existing distributed data stores . . . 113

7 CONCLUSIONS AND FUTURE WORK 116

REFERENCES . 120

x

www.manaraa.com

LIST OF TABLES

Table

3.1 Measured Constants for query execution. 23

4.1 Percentage of mismatch optimization decisions when using estimated
vs. measured density for the intermediate results. 67

xi

www.manaraa.com

LIST OF FIGURES

Figure

1.1 Overview of the software stack used in this work. 5

2.1 Simple example of equality encoded bitmaps and bit-sliced indexing
for a table with two attributes and three values per attribute. 8

2.2 A WAH bit vector. 11

2.3 A verbatim bitmap and its EWAH encoding. 11

3.1 Query time estimation over real data. 29

3.2 The VAL System Framework: Encoder and Query Engine. 31

3.3 Examples of Various Word Aligned Encodings. 32

3.4 Word Encapsulation. 39

3.5 Example of converting a 64-bit VAL compressed bit vector using s=30
down to a 64-bit VAL compressed bit vector using segment s=15. 43

3.6 Combined Gain for Sorted Bitmaps. 49

3.7 Combined Gain for Non-sorted Bitmaps. 50

4.1 The query overhead created when the optimizer cannot improve query
time. 65

4.2 Top-K query times for datasets with average attribute correlation: [Uni-
form=0.0002]; [Zipf-1=0.0003]; [Zipf-3=0.00032]; [Keg=0.26]; [Poker=0.02];
[Internet=0.024]. 66

4.3 TopK queries over synthetic datasets with 5 attributes, 10M rows. Each
attribute is represented by a BSI with 20 slices (normalized values with
6 decimal positions). 70

4.4 TopK queries over real datasets. 70

xii

www.manaraa.com

4.5 Example of BSI Arithmetic applied for finding top-2 tuples given a
weighted preference query. 76

4.6 Top-k weighted query on real data (K= 20 - 1,000). 77

5.1 BsiAttribute class diagram. 81

5.2 Example of vertical and horizontal partitioning of a BsiAttribute. 83

6.1 Top-k (preference) query stages using the two-phase BSI slice mapping
method. 90

6.2 Aggregation using a single round tree reduction with the BSI sum op-
erator. 96

6.3 Aggregation using a two round group-tree reduction with the BSI sum
operator. 98

6.4 SUM BSI Using Slice Mapping Example. 101

6.5 Aggregation query time with increasing data cardinality.(Synthetic dataset,
uniformly distributed data over 260 attributes and 5 Million rows). . . . 108

6.6 Aggregation performance for varying the number of rows. (Synthetic
dataset, uniformly distributed data over 260 attributes with cardinality
1012). 109

6.7 Aggregation using the Slice BSI method when varying the number of
dimensions and the number of executors(cpu cores) over the Rainfall
dataset (Dataset: Rainfall, 25 bit-slices per dimension). 110

6.8 Estimated data shuffle compared to measured data shuffle, for the two
phase aggregation method. (Dataset: Rainfall data, 20 slices per at-
tribute, index size: 9.8 GB, index partitions: 94). 111

6.9 Estimated execution time compared to measured execution time, for the
two-phase slice-mapping aggregation method. (Dataset: Rainfall data,
20 slices per attribute, index size: 9.8 GB, index partitions: 94). 113

6.10 BSI top-K preference and top-K weighted preference query time using
BSI slice-mapping compared to Hive on Hadoop map-reduce, and Hive
on Tez (Dataset: HIGGS, 32 bit-slices per dimension). 115

xiii

www.manaraa.com

LIST OF ALGORITHMS

Algorithm

1 General Bit-wise Logical Operation. 18
2 A Method for Decoding Down (p > 0). 45
3 A Method for Decoding Up (p < 0). 47
4 Operation of a compressed bit-vector C with a verbatim bit-vector V 56
5 Query optimization for AND, OR, and XOR bitwise operations. 59
6 Preference query execution using bit-slices. B is the set of all BSIs, q

is the query vector, and k is the desired number of results. 75
7 Concatenation of BSI attributes from different horizontal partitions. 85
8 Changes the encoding from sign-magnitude to two’s complement. 86
9 Changes the encoding from two’s complement to sign-magnitude. 87
10 Tree reduction for BSI aggregation. 95
11 Group tree BSI aggregation. 97
12 Two phase distributed BSI aggregation by slice depth. 103

xiv

www.manaraa.com

1

CHAPTER 1
INTRODUCTION

1.1 Motivation for scalable indexing in distributed settings

The past few years have seen an explosion in stored data volumes and have

produced a major change in how people and computing systems interact with

data. Today, research institutions, enterprises, as well as small organizations col-

lect very large amounts of data. They all do so with the goal of extracting valu-

able information for their businesses. The insights derived from the data are then

used in the decision making process for solving a wide range of problems. To

better understand customers and their behaviors and preferences, companies are

keen to expand their traditional datasets with social media data, browser logs,

as well as text analytics and sensor data to get a more complete picture of their

customers [1](e.g. streaming content providers and online retail stores). In health-

care, with the advent of high-throughput genomics, life scientists are starting to

encounter challenges in handling, processing and moving massive datasets, that

were once the domain of astronomers and high-energy physicists [2]. Terabyte-

sized datasets are now common in earth and space sciences, physics, finance, and

security and law enforcement [3].

Given the large sizes of these datasets and the stalling processor speeds,

increasingly more applications evolve towards distributed systems and organiza-

tions have to scale out to computer clusters. As a result, several new program-

www.manaraa.com

2

ming models and data storage frameworks for cluster environments have been

proposed. Google’s MapReduce [4] presented a simple and general model for

batch processing, that also handles faults. The MapReduce model gained popu-

larity as it enabled computations over large datasets without requiring expensive

supercomputers. Hadoop MapReduce [5] is the open source implementation of

MapReduce, it has been used extensively by the open source big data community.

Additionally, a number of specialized tools that run on top of MapReduce and its

file system [6] have been proposed [7]–[12]. However, in the MapReduce world

today, a great deal of distributed processing is still done by batch processing of flat

files.

1.2 Indexing requirements

To get the “value” that organizations look for in their collections of data,

there is often need for interactive data explorations and insight gathering. This

means that the queries should be answered at near real-time rates. Centralized

indices fall short when faced with the volume and dimensionality of modern data.

Hence, appropriate data indexing techniques must be integrated with the existing

distributed computing infrastructures.

In this work we argue that the bit-vector based indices can be applied in

distributed environments and improve query execution times for a wide range of

queries. Bit-vectors based indices, such as the Bitmap index [13], [14] and the Bit-

sliced index (BSI) [15], have been used successfully and extensively in the context

www.manaraa.com

3

of data warehouses and scientific databases. The main advantages of such indices

compared to others are:

• Partitionable - Most conventional indices have been designed for centralized

environments, and become inefficient when they do not fit into main mem-

ory, as it is often the case with large datasets. The bit-vector index is a binary

representation of the data, and indexes each dimension independently. Thus

can be easily partitioned horizontally, as well as vertically. By controlling the

granularity of the index partitions it is easier to find a good trade-off between

parallelism and network communication.

• Scalable for high dimensionality - Big Data is often high dimensional data,

and hierarchical indices suffer from the curse of dimensionality [16]. This

is, they become slower than sequential scan after a number of dimensions.

Bit-vector based indices have proved to scale well for high dimensions [17].

• Fast read access - The vast majority of big data analysis exploration appli-

cations are read mostly [18]. Once the data is written, it is rarely updated.

However new inserts are frequent. Fast read accesses facilitate faster query

times and provide the user easier access to useful information.

• Compressible - It is desirable that the index does not exceed the actual raw

data size. The smaller the index, the fewer disk accesses, less memory uti-

lization and network communication are required. Ultimately this translates

into faster query responses. The bit-vector indices are compressible. The

www.manaraa.com

4

most popular bitmap compression techniques are based on run-length com-

pression. Also, it is possible to control the level of data quantization, which

is a lossy type of compression.

• Fast bitwise operations - The main advantage of the bit-vector based indices

is that the bitwise operations are executed at the hardware level and are ex-

ecuted at clock cycle speeds. More sophisticated queries can be built from

strings of bit-level operations such as AND, OR, XOR and NOT.

1.3 Summary description of the proposed system

In order to adapt bit-vector based indices to a distributed environment and

in particular using the MapReduce framework, our work focuses on two comple-

mentary areas: index compression and query processing.

For index compression we propose two compression schemes for sparse

and dense bit-vectors. For sparse vectors, we combine existing compression tech-

niques into a single framework and allow different methods to coexist. For dense

bit-vectors we propose a hybrid compression scheme that allows for verbatim (or

uncompressed) vector to be combined with compressed vectors and the results are

compressed or not depending on the benefits for query execution time. The design

of these encoding methods is hardware-driven, and the query optimizer accounts

for the available computing hardware.

For query processing, we first extend the types of queries supported by

bit-vector based indices such as preference and top-k, K-Nearest Neighbors, and

www.manaraa.com

5

collaborative filtering. Because aggregation across all dimensions dominates the

query time in these applications when using the BSI, we propose distributed al-

gorithms to support selection, aggregation, and other specialized queries using

the MapReduce paradigm. Figure 1.1 shows the software stack being used for

implementing the distributed query processing over the bit-vector index. The dis-

tributed BSI arithmetic layer represents the proposed work - the BSI query engine,

and currently uses Apache Spark [19], [20] for distributing its tasks.

Figure 1.1: Overview of the software stack used in this work.

To prove the efficacy of the proposed approach, we implemented the in-

dexing and the query logic necessary for performing complex queries such as:

aggregations, preference queries, K-Nearest Neighbors(K-NN) and collaborative

filtering on an Apache Spark cluster. Preliminary results show that the proposed

approach outperforms Hive, a map-reduce based data warehouse, over Hadoop

www.manaraa.com

6

Map-Reduce and the optimized query engine Tez, by at least an order of magni-

tude. It is also 25 times faster than SparkSQL, which uses the same distributed

computation engine as the proposed index.

1.4 Dissertation plan

The rest of this dissertation is organized as follows. Chapter 2 describes the

background and related work relevant to this dissertation. Chapter 3 presents our

work on bitmap index compression. Chapter 4 presents the query algorithms for

complex queries such as preference queries, and describes a query optimization

method through hybrid compression for dense bit-vectors. Chapter 5 presents a

distributed architecture of the distributed bit-sliced index. Further, chapter 6 de-

scribes our methods for answering top-K and K-NN queries using the distributed

bit-sliced index. Additionally, we optimize result aggregations and provide cost

estimations, and means for tuning the partition sizes and the level of parallelism.

Chapter 7 summarizes and concludes the thesis.

www.manaraa.com

7

CHAPTER 2
BACKGROUND AND RELATED WORK

Bit-vector based indices, also known as bitmap indices, are popular index-

ing techniques for enabling fast query execution over large scale datasets. Because

bit-vector based indices can leverage fast bitwise operations supported by hard-

ware, they have been extensively used for selection and aggregation queries in

data warehouses and scientific applications.

2.1 Bitmap index

A bitmap index is used to represent a property or attribute value-range. For

a simple bitmap encoding, each bit in the bitmap vector corresponds to an object

or record in a table and bit positions are set only for the objects that satisfy the

bitmap property. For categorical attributes, one bitmap vector is created for each

attribute value. Continuous attributes are discretized into a set of ranges (or bins)

and bitmaps are generated for each bin.

For example, consider a bitmap index for a relation of different objects in

a spatial grid. Let us consider three attributes for this table: the object type and

the X and Y coordinates where the object resides. Attribute Type is a categorical

attribute and one bitmap vector is created for each object type. Attributes X and

Y are continuous attributes. The desired resolution for the grid defines how many

bins need to be created for X and Y. A grid with resolution 100 × 100, would re-

quire 100 bitmap vectors for attribute X and 100 bitmap vectors for attribute Y. A

www.manaraa.com

8

query asking for objects located within the grid cell identified by xi and yj , can be

answered by ANDing the corresponding bitmap vectors together. Any set bit in

the resulting vector indicates an object located within the cell.

If the number of objects is fixed, increasing the resolution of the grid in the

running example will increase the number of bitmap vectors producing a larger

index but it will also increase the sparsity of the bit-vectors created. For this reason,

bitmap indices are often compressed using run-length based encoding. A run refers

to a set of consecutive bits with the same value, i.e., all 0s or all 1s. Sparse bitmap

will have long runs of zeros.

The topic of bitmap indices was introduced in [15]. Several bitmap encoding

schemes have been developed, such as equality [15], range [21], interval [21], and

workload and attribute distribution oriented [22]. Several commercial database

management systems use bitmaps.

Raw Data Equality Bitmaps Bit-Sliced Index (BSI) BSI SUM
Attrib 1 Attrib 2 Attrib 1 Attrib 2

Tuple Attrib 1 Attrib 2 =1 =2 =3 =1 =2 =3 B1[1] B1[0] B2[1] B2[0] S[2]3 S[1]2 S[0]1

t1 1 3 1 0 0 0 0 1 0 1 1 1 1 0 0
t2 2 1 0 1 0 1 0 0 1 0 1 0 0 1 1
t3 1 1 1 0 0 1 0 0 0 1 0 1 0 1 0
t4 3 3 0 0 1 0 0 1 1 1 1 1 1 1 0
t5 2 2 0 1 0 0 1 0 0 1 1 0 1 0 0
t6 3 1 0 0 1 1 0 0 1 1 0 1 1 0 0

1S[0]=B1[0] XORB2[0],C0 =B1[0] ANDB2[0]
2S[1]=B1[1] XORB2[1] XOR (C0)
3S[2]=C1=Majority(B1[1],B2[1],(C0))

Figure 2.1: Simple example of equality encoded bitmaps and bit-sliced indexing for a table
with two attributes and three values per attribute.

Figure 2.1 shows an example for a dataset with two attributes each one with

3 distinct values (cardinality=3). For the equality encoded bitmaps, one bitmap is

www.manaraa.com

9

generated for each attribute value and the bit is set if the tuple has that value.

2.2 Bit-sliced index

BSI (Bit-Sliced Index) [15], [23] can be considered a special case of the en-

coded bitmaps [24]. With bit-sliced indexing, binary vectors are used to encode the

binary representation of the attribute value. One BSI is created for each attribute.

For the BSIs in the example (Figure 2.1), since each attribute has three pos-

sible values, the number of bit-slices for each BSI is ⌈log23 = 2⌉. The first tu-

ple t1 has the value 1 for attribute 1, therefore only the bit-slice corresponding

to the least significant bit, B1[0] is set. For attribute 2, since the value is 3, the

bit is set in both BSIs. The SUM for the two BSIs is also shown in the figure.

In this case, the maximum value of the sum is 6 and the number of bit-slices is

⌈log26 = 3⌉. The addition of the BSIs representing the two attributes is done us-

ing efficient bit-wise operations. First, the bit-slice sum[0] is obtained by XOR-

ing B1[0] and B2[0] i.e. sum[0] = B1[0] ⊕ B2[0]. Then sum[1] is obtained in

the following way sum[1] = B1[1] ⊕ B2[1] ⊕ (B1[0] ∧ B2[0]). Finally sum[2] =

Majority(B1[1],B2[1], (B1[0] ∧B2[0])). BSI arithmetic for a number of operations

is defined in [23]. BSI is the most compact representation of an attribute as only

⌈log2 values⌉ vectors are needed to represent all values. However, their high den-

sity makes them hard to compress any further.

www.manaraa.com

10

2.3 Compression of bit-vectors

Bit-vector indices are typically compressed using specialized run-length en-

coding schemes that allow queries to be executed without requiring explicit de-

compression. Byte-aligned Bitmap Code (BBC) [25] was one of the first compres-

sion techniques designed for bitmap indices using 8-bits as the group length and

four different types of words. BBC compresses the bitmaps compactly but query

processing is CPU intensive. Word Aligned Hybrid (WAH) [26] proposes the use

of words instead of bytes to match the computer architecture and make access to

the bitmaps more CPU-friendly (w = 32or64 bits). WAH divides the bitmap into

groups of length w−1 and collapse consecutive all-zeros/all-ones groups into a fill

word.

2.3.1 Word-Aligned Hybrid run-length code (WAH)

Let w denote the number of bits in a word. Assuming the most significant

bit indicates the type of word we are dealing with, the lower (w − 1) bits of a literal

word contain the bit values from the bitmap. If the word is a fill, then the second

most significant bit is the fill bit, and the remaining (w − 2) bits store the fill length.

WAH imposes the word-alignment requirement on the fills. This requirement is

key to ensure that logical operations only access words.

Figure 2.2 shows a WAH bit vector representing 128 bits. In this example,

we assume 32 bit words. Under this assumption, each literal word stores 31 bits

from the bitmap, and each fill word represents a multiple of 31 bits. The second

www.manaraa.com

11

128 bits 1,20*0,4*1,78*0,30*1
31-bit groups 1,20*0,4*1,6*0 62*0 10*0,21*1 9*1
groups in hex 400003C0 00000000 00000000 001FFFFF 000001FF
WAH (hex) 400003C0 80000002 001FFFFF 000001FF

Figure 2.2: A WAH bit vector.

line in Figure 2.2 shows how the bitmap is divided into 31-bit groups, and the third

line shows the hexadecimal representation of the groups.

Recently, several bitmap compression techniques that improve WAH by

making better use of the fill word bits have been proposed in the literature [27]–

[32].

2.3.2 Word-aligned Bitmap Code (WBC)

WBC or Enhanced WAH (EWAH) [27], [33], divides the bitmap into groups

of w-bits, not w − 1-bits. EWAH uses two types of words: marker words and literal

words. Half of a marker word is used to encode the fills. The upper half (most

significant bits) of the fill word encode the fill value, and the run length and the

remaining bits are used to represent the number of literal words following the run

encoded in the fill. This implicit word type eliminates the need for a flag bit for

each word to identify the type of word.

Verbatim Bitmap (in hex) 400003C0 00000000 00000000 00000000 001FFFF0 000001FF
EWAH Bitmap (in hex) 0000 0001 400003C0 0003 0002 001FFFF0 000001FF

Figure 2.3: A verbatim bitmap and its EWAH encoding.

www.manaraa.com

12

Figure 2.3 shows a verbatim bitmap and its EWAH encoding. The verbatim

bitmap has 182 bits (6 32-bit words). The EWAH bit-vector always starts with a

marker-word. The first half of a marker-word represents the header. For a 32-bit

word length as in this case, the first 16 bits indicates the type and number of fill

words. The second half of the marker-word, tells the number of literals that follow

a marker-word (1 in the example). After the literal word comes another marker-

word. The first bit (0) indicates a run of zeros and the value 3 is the number of

words in the run. The second half of the marker word indicates that there are two

literals following the fill.

2.4 Bit-vector based indices used in distributed environments

Bitmap-based indices have been used in distributed environments as filters

for matching data and in the form of Bloom filters [34] to filter out entire parti-

tions that do not contain the data of interest for a given query. A Bloom filter is

a bit-array structure that allows testing whether a given value exists in a set, with

controlled false positive rate. For example, the authors in [35] exploit Bloom filters

to reduce the data communication costs in joins for hybrid warehouses. They do

so by using Bloom filters to ensure that only the records that will participate in the

join need to be transferred through the network.

A Bitmap Index for Database Service (BIDS) [36] have been proposed for

indexing large scale data-stores. BIDS indexes the data using Equality Bitmaps

and Bit-Sliced indices. Depending on the attribute cardinality of the data it decides

www.manaraa.com

13

whether to use equality encoded bitmaps, bit-sliced index, or not to create an index

for an attribute. The created index, either equality encoded bitmaps or bit-sliced

index, is then compressed using WAH. However, the bit-vector indices are only

used for point and range queries, and often retrieve only partial results. For more

complex queries, it is necessary to employ an additional index such as Trojan [37].

BIDS also compresses its bit-vector indices using WAH, regardless of the density

of the bit-vector, and as we show in [38], for high density bit-vectors, compression

should be applied only in certain cases, otherwise it imposes an overhead.

For high dimensional data, where there is need for dimensionality reduc-

tion, Locality-sensitive Hashing (LSH) [39] is often used. LSH algorithms use data

depending hashing so that similar items fall into the same “bucket”. This way LSH

approaches are extensively used in solving the K-Nearest Neighbors problem. We

use bit-vector based indices to answer KNN queries.

Another line of work exploits intra-cycle CPU parallelism available at the

bit level in modern processors. BitWeaving [40] focuses on running in-memory

data scans and operates on multiple bits of data in a single cycle, processing bits

from different columns in each cycle. Although an interesting concept, the index

is limited to in-memory databases and does not scale across multiple machines.

In the next two chapters we present our contributions and proposed work

for improved index compression and distributed query processing. Our compres-

sion can be integrated with most of the related work cited in this section and the

query processing algorithms are integrated within the Hadoop software stack.

www.manaraa.com

14

CHAPTER 3
BIT-VECTOR COMPRESSION

An effective mechanism for speeding-up queries is to build indices on the

queried attributes. As many of the conventional indexing mechanisms fail to scale

well, we opt for an index that is fast and suitable for parallelization. We pick

bit-vector indexing as our indexing of choice as it features fast low-level bit-wise

operations. Specifically, we employ the use of bitmap and bit-sliced indices.

As defined earlier, the bitmap indices are binary structures that identify the

rows that falls into a certain criteria. For each category, the bitmap index gener-

ates a bit-vector, thus for high cardinality datasets the bitmap index can be very

large, albeit rather sparse. To tackle this, we first analyze the current most popular

bitmap compression schemes and design a system that selects the most appro-

priate encoding method, depending on the dataset. We then take on improving

the existing word-aligned bitmap compressions by adding an additional segment

length that changes based on the bit-density. For higher bit-densities, a shorter

segment results in better compression. We call this compression method Variable

Aligned Length (VAL), and it is described further in Section 3.2

To support a larger array of queries, we integrate the Bit-Sliced index (BSI)

within our index. The BSI index stores a set of “bit-slices”. A bit-slice is a bit-vector

that contains one bit defined by its depth from each tuple of an attribute. Unlike

the bitmap index, the BSI index is denser, and its size is generally smaller than the

size of the raw data, even without applying compression. However we find that, in

www.manaraa.com

15

certain situations, compression can be applied, and can improve query execution

times. Thus we propose a query optimization method through compression of the

BSI slices, as described in Section 3.3.

We have evaluated several word-aligned bitmap compression techniques in

terms of compression ratio but more importantly query time for point and range

queries. As expected, no encoding is better than all others in all cases. However,

our results evidence that there are specific scenarios in which one method should

be preferred over the others. Depending on one’s needs, the preference could be

towards a more compact bitmap index or faster queries. In this study we provide

insights as to which encoding should be preferred depending on the dataset. For

example, EWAH could be preferred for bitmaps that are hard-to-compress, that

have short fills and mostly literals; PLWAH could be preferred for very sparse

bitmaps where it compresses significantly better than WAH and may have faster

query times.

Furthermore, we formalize a method for estimating relative query perfor-

mance between two encodings before actually compressing the bitmaps. This

method only requires a single traversal of the bitmaps for providing these esti-

mations, and has proven to be accurate.

www.manaraa.com

16

3.1 Compression and query performance analysis for word-aligned bitmap

compression methods

Having already described the basic principles of the WAH bitmap encod-

ing in chapter 2, we proceed with analyzing the probable bitmap sizes and query

algorithm complexity of WAH.

WAH Compressed Bitmaps

Let d be the bit density of a uniform random bitmap. The probability of

finding an uninterrupted group that is a 1-fill, i.e., 2w − 2 consecutive bits that are

one, is d2w−2. Where w is the word length. Similarly, the probability of finding

a counting group that is a 0-fill is (1 − d)2w−2. Thus, the expected size of a WAH

compressed bit-vector containing N bits is:

mWAH(d) =
N

w − 1
(1 − (1 − d)2w−2 − d2w−2).

For an attribute following a probability distribution, where the ith value has a prob-

ability of pi, the total size of the bitmap index compressed using WAH is:

sN =
c

∑
i=1
mR(pi) ≈

N

w − 1
(c −

c

∑
i=1

(1 − pi)2w−2 −
c

∑
i=1
p2w−2i),

where N is the number of objects or bits in the bitmap, mR is the expected number

of words in a random bitmap, w is the word size, and c is the cardinality of the

attribute [26].

www.manaraa.com

17

WAH-encoded bitmaps never require more than 4N words. If c < 0.01N ,

then the maximum size of the WAH compressed bitmap for the attribute is about

2N words. A clustering factor f is computed as the average number of bits in the

1-fill runs. The maximum size of the WAH compressed bitmap for a clustering

factor f > 1 and c < 0.1N is:

s ≈ N

w − 1
(1 + 2w − 3

f
),

which is nearly inversely proportional to the clustering factor f .

A more detailed reasoning and proofs for the above formulas can be found

in [26].

Let us denote by mx and my, the number of words in the WAH compressed

bitmap vectors X and Y , respectively. M is the number of words in the uncom-

pressed bitmap (M = ⌈ N
w−1⌉ + 1). In the generic algorithm 1, the main loop is exe-

cuted max(mx,my) ≤ Iw ≤ min(mx +my − 1,M) times. The decode method is called

once per word: mx +my times. The addLiteral method is called when two literal

words or a fill and a literal are operated together: αIw, where α is the fraction of

iterations that generate literals. The addFill method is called when two fills are

operated together: (1 − α)Iw times.

www.manaraa.com

18

Algorithm 1: General Bit-wise Logical Operation.
Input: bit-vector x, y - Input bit-vectors
Output: bit-vector z - the resulting compressed bit-vector after performing the

logical operation x ○ y
1 bitVector z=new bitVector(M);
2 while x.vec and y.vec are not exhausted do
3 if x.activeWord is exhausted and there are more words in x then
4 x.decodeWord();
5 end
6 if y.activeWord is exhausted and there are more words in y then
7 y.decodeWord();
8 end
9 while x.activeWords and y.activeWords are not exhausted do

10 if x.activeWord.nSegments == 0 then
11 x.activeWord = x.nextWord();
12 end
13 if y.activeWord.nSegments == 0 then
14 y.activeWord =y.nextWord() ;
15 end
16 if x.activeWord.isF ill and y.activeWord.isF ill then
17 nSegments=Min(x.activeWord.nSegments, y.activeWord.nSegments);
18 if x.activeWord.fill ○ y.activeWord.fill == 0 then
19 z.vec.add(FillOfZeros + nSegments);
20 end
21 else
22 z.vec.add(FillOfOnes + nSegments);
23 end
24 x.activeWord.nSegments-=nSegments;
25 y.activeWord.nSegments-=nSegments;
26 end
27 else
28 z.vec.add(x.activeWord.getLitValue() ○ y.activeWord.getLitValue());
29 //GetLitValue decreases nSegments by 1
30 end
31 end
32 end
33 return z;

The size of the resulting bitmap is mz < min(mx + my,M). This space is

allocated before entering the loop to avoid dynamic memory allocation. Let us

assume that the time to allocate mz is Ca(mx + my). C1 is the time to decode a

word, Cl the time to execute appendLiteral, Cf the time to execute appendFill, and

www.manaraa.com

19

C0 is the loop overhead. The time to execute a query using Algorithm 1 is:

t = Ca(mx +my) +C1(mx +my) +ClαIw +Cf(1 − α)Iw +C0Iw (3.1)

Because Iw is always smaller than mx +my, it is easy to see from Equation 3.1 that

Algorithm 1 has a complexity ofO(mx+my), which means that the query time is di-

rectly proportional with the size of the bitmap index. In order to estimate the query

time however, this information is insufficient. A more precise approximation of Iw

is required. Further in the next sections we show that Iw can be approximated with

high accuracy, and so can the query time.

PLWAH/CONCISE Compressed Bitmaps

PLWAH and CONCISE exploit the fact that not all the bits in a word are

used to store the run-length counter when compressing a fill word. Often runs are

interrupted by a single set/unset bit, thus they use some of the bits in the fill word

to store a “position list” of the set/unset bit. This enables a better compression

when compared to WAH.

Let s be the maximum number of heterogeneous bits a fill word can store

in its list of positions. The size of the list is s log2(w) and the size of the counter is

w − 2 − s log2(w). A single fill word can thus represent up to (2w−2−s log2(w)) groups

of length (w − 1). All compression schemes have an overhead when representing

incompressible bitmaps. For WAH and PLWAH, this overhead is one bit per word,

so the compression ratio isw/(w−1). A bitmap containing no homogeneous groups

www.manaraa.com

20

will not have any fill words and will be incompressible. The upper and lower

bounds of the PLWAH compression ratio are respectively: (2w−2−s log2(w) + 1)(w −

1)/w and (w − 1)/w. As long as the upper bound is not reached, the worst PLWAH

compression ratio is bounded by the WAH compression ratio. A more detailed

description of PLWAH compressed bitmaps is provided in [28].

We estimate that the number of words in the PLWAH compressed bit-vector

containing N bits, and a density d is:

mPLWAH(d) =
N

w − 1
(1 − (1 − d)2w−2 − d2w−2) − SPLWAH,

where SPLWAH is the number of sparse words that can be encoded within the PLWAH

fills. The statistics about this variable and the other used as inputs for size estima-

tions have to be collected when scanning the data.

PLWAH uses the same generic Algorithm 1 as WAH for performing bit-

wise logical operations. Thus a big-O analysis of WAH querying algorithms and

PLWAH querying algorithms would lead us to equivalent upper bounds. Thus,

performing performance measurements for each of the constants in Equation 3.1

could be a better way to differentiate between the two encodings. In the next

section, we perform an exercise of measuring the performance for the constants

defined in Equation 3.1, and then show that it is possible to predict the relative

performance between PLWAH/CONCISE and WAH for different datasets.

The WAH and EWAH bitmap encodings have often a similar compression

www.manaraa.com

21

ratio, however for some data distributions the difference in compressed size can

be significant between WAH and EWAH. This is also reflected in the EWAH query

time.

EWAH Compressed Bitmaps

In general, WAH and WBC (EWAH) encoding schemes are fairly similar.

The difference between WBC (EWAH) and WAH is that the first one uses only

half of the fill word to encode the 0-fill or the 1-fill, while the second half is used

to mark the number of literals following the fill word. Because of this, EWAH

may need more than one word to encode a fill, if the bitmaps are very sparse.

Thus, when estimating EWAH compressed size of a bitmap, one should consider

counting the number of run-lengths longer than EWAH can encode, and adjust the

WAH size estimation equations for EWAH. Thereby, the expected size of a EWAH

compressed bit-vector containing N bits with density d is:

mR(d) ≈
N

w
(1 − (1 − d)2w − d2w) +Rex,

where Rex is the number of runs that have a length greater than (w × 2
w
2) − 1.

WBC/EWAH compression scheme was designed with the goal of avoiding

decoding literal words at query execution time. This reduces the number of mem-

ory accesses and can result in faster queries when compared to WAH. However at

the same time, when compressing the resulting bit-vector EWAH has to increment

the last counter of the following literal words. Thus every time EWAH performs a

www.manaraa.com

22

literal append, it has to access the last marker-word to increment its literal counter,

and also decrement the counters of the bitmap columns queried.

3.1.1 Performance estimations

As discussed in the previous sections, there is no best bitmap compression

technique that can outperform the rest, for all types of data in both, query time and

index size. Furthermore, since the query algorithms for all analysed techniques

have the same upper bound complexity, it is difficult to estimate which one will

perform better just by considering index sizes and the query big-O analysis.

In this section we estimate query times before actually running the queries

for datasets compressed with different bitmap encoding schemes. Generally we

want to estimate query times before even compressing a dataset. Estimating both

the size of the compressed data and the query time can help deciding in choosing

the most suitable bitmap index compression technique for the data.

Our goal is to formalise a method to estimate the performance of these dif-

ferent encoding techniques in order to select the best bitmap compression encoding

for various datasets. As users have different preferences, “best” could have differ-

ent meanings, thus it is important to estimate both, the compression size and ex-

pected query time. Then it is at the user’s discretion to choose between better com-

pression ratio or faster query time. We show that it is possible to estimate within a

confidence level of 95% the relative performance between four word-aligned based

bitmap compression schemes: WAH, EWAH and PLWAH/CONCISE.

www.manaraa.com

23

Table 3.1: Measured Constants for query execution.

PLWAH/
WAH EWAH CONCISE

Memory alloc(Ca) x x x
Decode Literal(Dl) 10x 10x 16x
Decode Fill (Df) 20x 20x 22.5x
Append Literal (Cl) 5x 7.5x 7.5x
Append Fill (Cf) 5x 5x 5x

First we compute the size of compressed bitmaps using the procedures from

the previous section. As discussed in previous sections, the query time is propor-

tional to the size of the two compressed bitmaps being queried, however the com-

plexity of decoding and appending has a big impact too. Algorithm 1 traverses

through bit-vector x and bit-vector y until both of them are exhausted. Being a

generic algorithm, Algorithm 1 is applicable for all, WAH, EWAH and PLWAH.

Thus Equation 3.1 is valid for these compression schemes as well. Ca,C1,Cl and

Cf are all constants and can be measured empirically. The decoding of a literal

word requires less instructions than decoding a fill word. Thus, we split the de-

coding cost, C1, into two components: Dl for decoding a literal word, and Df for

decoding a fill word. Therefore, the general query time for Algorithm 1 becomes:

tG = Ca(mx +my) +Dl(mxl +myl) +Df(mxf +myf) +ClαIw +Cf(1α)Iw +C0Iw, (3.2)

where mxl and myl represent the number of literals contained in the compressed

bit-vector x and y respectively. Similarly, mxf and myf are the number of fills in x

and y.

www.manaraa.com

24

Table 3.1 shows measured values of the constants from Equation 3.2 for

WAH, PLWAH/CONCISE and EWAH. The constants are measured in time units

that are relative to the machine the queries are run on. The relative differences

between them are expected to be preserved on a faster/slower computer. From

Table 3.1 we can observe that Cl and Cf are not equal, and thus the number of fill

appends and literal appends have to be estimated.

Another unknown remains the number of times Algorithm 1 executes the

main loop, which is equal to the total number of appends. The number of iterations

for the main loop is completely dependent on the sizes of the queried bit-vectors.

More specifically, it depends on the size of the largest compressed bit-vector and

the size ratio between the two bit-vectors. For two independent and highly com-

pressed bit-vectors, there is small probability that the fill words of one are aligned

with the other bit-vector. Thus Algorithm 1 requires two iterations to exhaust one

word from that largest bit-vector. On the other hand, for a bit-vector that is not

compressed at all, only one iteration is sufficient to consume one word from the

largest bit-vector. At the same time, the size ratio between the two bit-vectors be-

ing queried determines the final number of iterations. If the better compressed

bit-vector is significantly smaller than the other bit-vector, then the probability for

two fill words being aligned is higher than when the two bit-vectors are relatively

equal. Equation 3.3 gives the formula for estimating the total number of iterations

www.manaraa.com

25

in the main loop of Algorithm 1:

Iw ≈ [(1 −max (CRx,CRy)) ×
min (mx,my)
max (mx,my)

+ 1] ×max (mx,my), (3.3)

whereCRx andCRy are the compression ratios for bit-vectors x and y respectively:

CRx = size(x)compressed/size(x)uncompressed

Every iteration of Algorithm 1 results in either a fill append or a literal append.

Thus the total number of appends is equal to the number of iterations.

We estimate the number of fill appends (If) based on the probability of two

fills being aligned in the compressed bit-vectors that are queried. The remaining

appends are appends literals (Il). The probabilities for estimating the number of

fill appends differ based on the compression scheme used. In the next three sub-

sections we estimate the query time performance for WAH, EWAH, and PLWAH/-

CONCISE respectively.

Performance Estimations for WAH

For WAH, the total number of fill appends is the probability of two fill

words being operated at the same time in Algorithm 1, multiplied by the num-

ber of iterations in Algorithm 1. The probability of operating two fill words within

the same iteration, is at least the product of the probabilities of encountering a fill

www.manaraa.com

26

word in each of the operated bit-vectors:

PappendFill >
Fillsx
mx

×
Fillsy
my

.

In the equation above we have the “greater” comparison operand because even

when it happens for two fill words to be operated at the same time, the probability

of them having the same run-length encoded is close to zero. In fact, if the number

of fill words would be equal between the two bit-vectors, the number of fill ap-

pends would be exactly double the product of the probabilities of encountering a

fill word in each of the operated bit-vectors multiplied by the total number of ap-

pends. Meaning that, on average, it takes exactly two fill-words from the second

bit-vector to consume a fill-word from the first fill-vector, and vice-versa. How-

ever, when the number of fill words differs between the two queried bit-vectors,

then, on average, it will take more than two fill words from the larger bit-vector

to consume one fill-word from the smaller bit-vector. Based on these, we estimate

that the number of append-fills in WAH compression scheme can be approximated

by:

If =
Fillsx
mx

×
Fillsy
my

× Iw × (3 −
min (mx,my)
max (mx,my)

), (3.4)

where Fillsx and Fillsy are the number of fill words in bit-vector x and y respec-

tively, while mx and my are their respective sizes. Plugging If and Il in Equation

www.manaraa.com

27

3.2, we obtain:

tWAH = Ca(mx +my) +Dl(mxl +myl) +Df(mxf +myf) +ClIl +CfIf +C0Iw. (3.5)

The number of literal appends (Il) can be approximated by subtracting the number

of fill appends from the total number off appends Il = Iw − If .

Performance Estimations for EWAH

EWAH query algorithm has some differences from WAH query algorithm.

The theoretical advantage of EWAH over WAH is that it does not require any de-

coding for the literal words. On the other hand, maintaining the counter of the

literal words when appending literals at query time adds cost to EWAH query

processing time. Furthermore, some EWAH compressed bitmaps may have a

larger size, due to its smaller fill encoding capacity, and thus EWAH may require

more decodes for fills than WAH in these cases. The Equation 3.4 is applicable for

EWAH as well, considering EWAH number of literals and fills in the compressed

bit-vector.

Even if EWAH does not explicitly decode the literal words, it still has to

access them once, and it also has to decrement the counter that tells how many

literals are still following. This means that decoding literals for EWAH may be

cheaper, however, it still comes at a cost. In general, the expected EWAH total

www.manaraa.com

28

query time would be:

tEWAH = Ca(mx+my)+
CRx +CRy

2
×Dl(mxl+myl)+Df(mxf +myf)+ClIl+CfIf +C0Iw.

(3.6)

In Table 3.1, we set the Decode Fill time for EWAH the same as the one for WAH.

However this is only true for the case when there are no fill words. As EWAH

compresses better the bitmaps, the cost of decode literal decreases.

Performance Estimations for PLWAH/CONCISE

As discussed earlier, Algorithm 1 performs the same number of iterations

for both, PLWAH and WAH. Because these two schemes use the same hybrid en-

coding, the number of fill appends and literal appends between the two schemes

should be equal when performing the same query. Thus, the estimation results

from Equation 3.4 are also valid for PLWAH. There are several differences be-

tween these two schemes. One of them is that PLWAH utilises less memory to

store the compressed bitmap, and makes fewer memory accesses when decoding

the bitmap. On the other hand, decoding a PLWAH word requires more time than

decoding a WAH word due to its checks for sparse literals encoded within fills.

Finally, when compressing the resulting bit-vector on the fly, at query time, every

literal append should check whether or not the last word is a fill and if this is a

sparse literal that can be encoded together with the fill.

These variations result in query time differences when comparing these two

schemes. The ideal case for PLWAH is when it has a sparse literal between each

www.manaraa.com

29

0.5

0.6

0.7

0.8

0.9

1

1.1

Skin KDDCup Linkage Berkeley
Earth

Zipf-1Q
u

er
y

Ti
m

e
R

at
io

 (
W

A
H

/P
LW

A
H

)

Data set

WAH/PLWAH (estimate) WAH/PLWAH

(a) Estimated vs recorded query time ratio
WAH/PLWAH over real data

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Skin KDDCup Linkage Berkeley
Earth

Zipf-1Q
u

er
y

Ti
m

e
R

at
io

 (
W

A
H

/E
W

A
H

)

Data set

WAH/EWAH (estimate) WAH/EWAH

(b) Estimated vs recorded query time ratio
WAH/EWAH over real data

Figure 3.1: Query time estimation over real data.

fill word. In this case PLWAH can exploit the better memory utilization and fewer

bitmap accesses at maximum. The worst case is when there are no sparse literals

encoded within the fills. In this case PLWAH still has a more complex query algo-

rithm and append literal algorithm than WAH, while it does not benefit from the

memory advantage.

We evaluated our estimation methods using synthetic data, as well as four

real datasets, and predicted the relative performance of WAH versus PLWAH and

WAH versus EWAH within a confidence level of 95%. The synthetic data was

generated with a zipfian distribution. The four real datasets used in our evaluation

are: KddCup1 Berkeley Earth,2 Linkage,3 Skin.4 The estimation results are shown

1http://archive.ics.uci.edu/ml/datasets/KDD+Cup+1999+Data

2http://berkeleyearth.org/dataset/

3http://archive.ics.uci.edu/ml/datasets/Record+Linkage+Comparison+Patterns

4https://archive.ics.uci.edu/ml/datasets/Skin+Segmentation

www.manaraa.com

30

in Figure 3.1.

To summarize this section, we have evaluated several word-aligned bitmap

compression techniques in terms of compression ratio but more importantly query

time for point and range queries. As expected, no encoding is better than all oth-

ers in all cases. However, these results evidence that there are specific scenarios in

which one method should be preferred over the others. Depending on one’s needs,

the preference could be towards a more compact bitmap index or faster queries. In

this study we provide insights as to which encoding should be preferred depend-

ing on the dataset. For example, EWAH could be preferred for bitmaps that are

hard-to-compress, that have short fills and mostly literals; PLWAH could be pre-

ferred for very sparse bitmaps where it compresses significantly better than WAH

and may have faster query times.

Furthermore, we formalise a method for estimating relative query perfor-

mance between two encodings before actually compressing the bitmaps. This

method only requires a single traversal of the bitmaps for providing these esti-

mations, and has proven to be accurate. We evaluated our estimation method on

synthetic data, as well as on four real datasets, and predicted the relative perfor-

mance of WAH versus PLWAH and WAH versus EWAH within a confidence level

of 95%.

www.manaraa.com

31

3.2 Variable Aligned Length - VAL

Most modern bitmap compression techniques are variants of the Word-

Aligned Hybrid (WAH) encoding, which uses w-bit words to align with the un-

derlying CPU architecture, i.e., w = 32 or w = 64. While the word size w is fixed on

physical constraints, there is no such requirement that the segment length s, i.e., the

unit of compression, must be fixed at s = w−1. Indeed, WAH-style fills and literals

can easily be represented in s = 7 bit segments, which is packed into the physical

unit of bytes rather than words [28].

Legal
Segments (LS)

Bitmap
Characterization

Encoding
Selector

Segment Length
Selector Compress

VAL Encoder VAL Query Engine

Disk

Query Processor

Fetch,
Decode

word size (w),
alignment factor (b)

tuning
(lambda)

Queries
Results

Data Set

WAH PLWAH EWAH

Compressed Bitmap

...

Figure 3.2: The VAL System Framework: Encoder and Query Engine.

The selection of the compression method, and independently, the segment

length s, are both data and application-dependent. It is observable that there ex-

ists clear scenarios in which one method outperforms the others in time and/or

space. We have identified two orthogonal aspects that can be generalized: (1) the

encoding segment length s and (2) the encoding method used for compression.

We propose a unified bitmap compression framework, Variable Aligned Length

www.manaraa.com

32

0…0 000000001000000 0…0 100010010100000 0…0

(a) Verbatim Bitmap B (2,445 bits)

(b) WAH Compressed Bitmap B (s=15) (128 bits)

(c) PLWAH Compressed Bitmap B (s=15) (112 bits)

(e) VAL-WAH Compressed Bitmap B (s=15) (128 bits)

1010 000000000111101 000000001000000 000000001011111 100010010100000 0001 100010010100000 000000000000010

1000000000111101 0000000001000000 1000000001011111 0100010010100000 1000000000000010

1001110000111101 100000001011111 0100010010100000 1000000000000010

001111010000001 000000001000000 010111110000100 100010010100000 000000100000000

(d) EWAH Compressed Bitmap B (s=15) (120 bits)

61 x 15 95 x 15 4 x 15 2 x 15

4 x 16

4 x 16

4 x 15

3 x 15

Figure 3.3: Examples of Various Word Aligned Encodings.

(VAL), where these variations can coexist. Our framework inputs user preference

on the space-time trade-off, and automatically applies the optimal settings to im-

prove performance.

The proposed VAL system framework is shown in Figure 3.2, comprising

two main components: VAL Encoder and VAL Query Engine. The user inputs the

data and a set of system-specific parameters. The input dataset is first character-

ized, e.g, by profiling the overall bit distribution and length of runs. This infor-

mation is sent to the Encoding Selector and the Segment Length Selector. The former

selector chooses an appropriate compression encoding scheme, and the latter de-

cides on a segment length s to be used for encoding each bit vector. After compres-

sion, the compressed index is read by the VAL Query Engine which handles queries

over the dataset. Queries can be executed over data compressed with different

encoding techniques or segment lengths.

www.manaraa.com

33

Bitmap Encoding Commonalities

To show the commonalities and generalizability of modern WAH-variant

schemes, let us focus on the encodings for several techniques: Word-Aligned Hy-

brid (WAH) [26], Enhanced WAH (EWAH) [27], and Position-List WAH (PLWAH)

[28]. Figure 3.3 (a) shows a verbatim, uncompressed, bitmap B that will be used

to drive our examples. It contains 2,445 bits divided into a 61 × 15-bit run of zeros,

followed by 15 clear bits with a single set bit in position 7, then another 95 × 15-bit

run of zeros, 4× 15 bits of mixed zeros and ones, and finally, a run of 30 zeros. This

example uses a w = 64 bit architecture and a segment length of s = 15, which means

that each consecutive 15-bit segment in B will be considered at a time as units of

compression.

Recall that the standard version of WAH is aligned to the machine’s word

size w, and thus uses a segment length of s = w − 1. Figure 3.3 (b), shows a WAH-

encoded bitmap using a s = 15 segment length. Instead of a word, we assume a

more generalized block of size w′ = 16 bits. Note that in this scenario, four w′ = 16-

bit blocks can be physically encapsulated into a w = 64 bit word. For each w′-bit

block, the most significant bit (shown in bold) is the flag bit, e.g, 1 for fills and 0

for literals. If a w′-bit block is a fill, the second most significant bit (underlined)

denotes the fill bit. The remaining 14 bits in the fill block are then used to encode

the run of consecutive of fill segments in the verbatim bitmap (61 for the first fill

block). This is followed by a literal block, which stores the 15-bit literal segment

with the 7th bit set to 1, and so on.

www.manaraa.com

34

The next example we show is PLWAH, in Figure 3.3 (c). PLWAH’s defining

property lies in its ability to encode fills even with the presence of a single dirty

bit, which would disrupt a run. Note that again, we are assuming s = 15, which

imposes a w′ = 16 block size. Notice that the single dirty bit (in the 7th position) in

verbatim bit vector pollutes an otherwise longer run of 0s. Instead of encoding this

dirty block as a literal, PLWAH uses the four position bits shown in italic to denote

the position of the dirty bit, i.e, (7)10 = (0111)2. If the position bits for a fill block are

zeros, then no literal word is integrated. This determination requires some decode

overhead when processing queries. PLWAH uses p = ⌈log2 s⌉ bits to index the dirty

bit position, and therefore the maximum run-length that can be encoded with a

single fill block is 2s−p−1 × s. Longer fills will require two fill words to be encoded.

Figure 3.3d) shows the EWAH encoding for bit vector B. For fill blocks,

p = ⌊ s2⌋ bits (in italics) are used to indicate the number of literal blocks following the

fill. The maximum run-length that can be encoded with a single fill word is thus

(2 s2−1s). For this reason, EWAH typically does not compress as well as the other

methods. However, its improved performance during query time is significant be-

cause literal words can be skipped or appended without decoding when operated

with a fill.

Finally, Figure 3.3e) shows the bitmap B encoded using WAH within the

VAL framework (VAL-WAH). VAL packs the segments into a word using w′-bit

blocks and creates a word header (in bold) that stores the flag bits, one per block

within each word. By placing this header in the front, we can reduce the decoding

www.manaraa.com

35

overhead. The compression performance of VAL-WAH is the same as WAH for the

same s. The compression improvements achieved by VAL come from the use of

smaller segments which in general, will produce better compression than longer

ones. The exception is the case where the bits used to represent a fill are not enough

to represent long runs in a single block. For comparison purposes, the bitmap B

from the example would require 320 bits after compression using WAH-64 (s = 63).

For this example, WAH-64 would require 2.5× more storage than VAL-WAH.

Bitmap Processing Commonalities

The similarities in encoding schemes also imply commonalities in query

execution. Let us consider the WAH query processing algorithm and how it com-

pares with other methods. Without loss of generality, the discussion that follows

considers a query executed as the AND of two compressed bit vectors. An AND opera-

tion is performed by iterating over the words in the two bit vectors. For each WAH

encoded word, the flag bit is read, and decoded into an activeWord. An activeWord

is a structure that identifies the type of word (fill or literal). If the activeWord is a

fill, then it also holds the fill bit value and the number of segments in the run. Two

activeWords from each bit vector are queried together, until the number of segments

is exhausted. At this point, the next word is read from the cache and decoded.

An activeWord can be interpreted as the following structure:

www.manaraa.com

36

typedef struct {

/* holds encoded word value */

word_t val;

/* fill-specific vars */

bool fillBit

int runLength;

} activeWord;

where sizeof(word t) is equal to the machine’s word size. The encoded value of

the word is stored in val, and to determine whether an activeWord is a fill or literal is

done by simply examining val’s most significant bit. Clearly, the values of fillBit

and runLength are only assigned if the activeWord is determined to be a fill.

There are three cases when executing the AND between the two activeWords,

X and Y. (Case 1) If X and Y are both fills, the result is a new fill word with its

fillBit equal to the result of X.fillBit & Y.fillBit. The new fill word’s runLength

is assigned abs(X.runLength-Y.runLength). (Case 2) If X and Y are both literals, then

the result is a new literal word with val set to X.val & Y.val. (Case 3) Finally, if

X is a literal and Y is a fill, then the number of segments in the fill word is first

decremented by one: Y.runLength--. Afterwards, the result is a new literal word

with val being set to the & result between X.val and the literal value of Y.fillBit.

Bit vectors are never explicitly decoded one bit at a time. Considering each bit

as a processing unit, operations of type (Case 1) observe a superlinear speedup,

while operations of type (Case 2 and Case 3) observe an s× speedup, where s is the

encoded segment length.

Due to the shared encoding similarities of the WAH variants, we observe

www.manaraa.com

37

that WAH’s core processing algorithm can also be easily extended to process PLWAH,

Concise, Compax, or EWAH with minor modifications. For PLWAH and Concise,

decoding of the activeWord word could produce one fill and one literal when the

position bits for the fill are not all zeros. This literal is the word either following or

preceding the fill, respectively for PLWAH and Concise. The logic for query pro-

cessing remains similar; the difference is to operate both the dirty literal and the

fill before decoding the next word.

To query using Compax, there will be more branch operations, because it

uses four types of words. For fill words, more decoding is required to decide

whether the fill is of the form Fill-Literal-Fill (FLF) or Literal-Fill-Literal (LFL). In

those cases, three active words will be created but the query processing logic still

remains the same. The branching overhead is the trade-off for Compax’s update

friendly structure.

Because EWAH applies a different encoding for the fills, it does not generate

multiple activeWords after decoding. It only stores the number of literal words

following the fill, and this information is used for query optimization. When two

fills are ANDed together and one of them is a zero fill, literal words can be skipped

without decoding by incrementing the position of the vector iterator. Also, literals

can be ANDed until the counter reaches zero without requiring any decoding. These

translate into faster query execution. Nevertheless, the logic for operating literals

and fill values remains relatively unchanged.

www.manaraa.com

38

The Val Encoder

To generalize query processing over variable segment lengths, we introduce

a more general activeBlock in lieu of an activeWord. An activeBlock shares the basic

structure of an activeWord, except that the activeBlock.val considers sequences of

s (s ≤ w) bits. When s = w, there is one block per word, and the structures and

query processing reduce back to the original algorithm. However, for encodings

using smaller segment lengths s < w, decoding of a physical word, would produce

two or more activeBlocks. For example, when w = 64, s = 15, there would be four

activeBlocks per physical word.

The goal of our framework is to improve compression without adversely

affecting query performance. For this reason, the segment lengths s cannot be ar-

bitrary, as we would lose the alignment benefits. Queries would suffer from con-

siderable decoding overhead during query execution. Given the machine’s word

size w and an alignment factor b, b ≤ w, we define the set of Legal Segment Lengths

LS as,

LS = {2i × (b − 1) ∣ 0 ≤ i ≤ (log2w − log2 b)} (3.7)

On a 64-bit architecture (w = 64) and alignment factor b = 16, the legal segment

lengths are, LS = {15,30,60}. This definition of segment lengths ensures that

larger segment lengths are always multiple of smaller segment lengths, and there-

fore the activeBlocks they create are always logically aligned. To further reduce the

www.manaraa.com

39

overhead of query execution, the segments are also memory-aligned, i.e, segments

never cross over two physical words. For instance, segment lengths s = 15,30, and

60 encapsulate four, two, and one block(s) into a single physical word, respectively.

When needed, blocks are padded with zeros within the physical word. For exam-

ple, recall that each block is encoded using s + 1 bits (the one extra bit is needed to

flag the block as being either a literal or a fill).

 … Flag Bits Block 1 Block 2 Block N

s bits s bits s bits

w – bit Word

w/b bits

Figure 3.4: Word Encapsulation.

This word encapsulation scheme is shown in Figure 3.4. The number of

blocks encapsulated into a word is given by N = (b−1)×w
b×s . The flag bit for each block

is stored in the w
b -bit word header. The goal of the word header is to minimize the

time required to align the segments between two bitmaps encoded using different

block sizes. For example, two literal blocks with a VAL bitmap encoded using

s = 15 can be directly operated with the corresponding literal block encoded using

s = 30. It is worth noting that small alignment factors would have a significant

number of unused bits for larger segments in LS. For example, for b = 8 andw = 64,

the legal segment length s = 56 would have 7 unused bits per word. However, it

www.manaraa.com

40

is worth noting that in many cases the increase in compression for the bit vectors

encoded with smaller segment lengths will make up for these pad bits in the bit

vectors encoded with larger segment lengths.

Let us consider again the system framework presented in Figure 3.2. Along

with the dataset, the user also inputs the machine’s word size w, the alignment

factor b, and a tuning parameter λ (explained later). First, w and b are input into

Equation 3.7 to determine the set of legal segment lengths, LS. Next, encoding a

bitmap involves two major decisions: (1) the encoding method to use, and (2) the

segment length s ∈ LS. To inform on these decisions, the Bitmap Characterization

component passes over and profiles each bit vector from the input data. This pro-

file is used as input into both the Encoding Selector and the Segment Length Selector.

The Encoding Selector determines an encoding for a bit vector given its pro-

file. For example, if the bit vector is very sparse, then PLWAH may be selected.

EWAH may be preferred for noisy bitmaps that have a majority of literals and

short fills. The Segment Length Selector uses the profile and LS to identify an appro-

priate s ∈ LS to compress each bit vector. In general, bitmaps compressed using

smaller segments will compress more aggressively, but may require more decod-

ing and bookkeeping operations when executing queries. To exploit this trade-off,

we allow users to input a tuning parameter λ, 0 ≤ λ ≤ 1. As λ approaches 0, the sys-

tem will attempt to achieve the best compression possible, while a λ approaching

1 prioritizes faster query execution time.

www.manaraa.com

41

Given a bit vector B and λ, the Segment Length Selector will return

s =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

sc+i, if size(B,sc)⋅(1+λ)1+i+λ
i+1 ≥ size(B,sc+i)

sc, otherwise

(3.8)

where size(B,s) is the size of the bit vector B when compressed with segment

length s. The term,

sc = argmin
si∈LS

{size(B,si)} (3.9)

refers to the segment length that yields the most compressed bit vector. Similarly,

sc+i denotes the ith legal segment length greater than sc in LS.

After these parameters are selected, B is compressed. A header byte must

be appended to the beginning of each compressed bit vector. The most significant

four bits in the header are used to identify the multiplierm for the alignment factor

b, such that (m × b) ∈ LS is the selected segment length. The remaining four bits

encodes the method used, e.g, WAH or PLWAH.

Enabling variable segment lengths complicates query processing. As dis-

cussed previously, queries are executed by performing logical bitwise operations

between bit vectors. In general, the more compressed blocks are contained in the

bit vector, the longer it takes to execute the query as compressed blocks need to be

decoded. Using variable segment lengths can increase decoding costs. However,

www.manaraa.com

42

in the cases where both bitmaps are compressed well, there are opportunities for

faster query execution by processing whole compressed blocks.

In our framework, two VAL bit vectors Xm×s and Ys encoded using seg-

ment lengths m × s and s, respectively are operated together to produce bit vector

Zs, which stores the result of the bitwise logical operation Xm×s ○ Ys, where ○ is

a binary logical operator. Algorithm 1 shows the pseudocode for query process-

ing. Each bitmap is still decoded one physical word (currentWord) at a time (Line

1-7). The parameter m (Line 3) indicates that the currentWord should be decoded

into blocks of segment length m × s. The decoded currentWord contains a number

of activeBlocks. This activeBlock is tantamount to the activeWord structure used in

WAH. The currentWords are iterated one block at a time (Lines 8-14) and are op-

erated together until exhausted. Two fill blocks can be operated without explicit

decompression (Lines 15-20). If one of the activeBlocks is a literal, then the values

are operated together and the number of segments in the fill, nSegments, is decre-

mented by 1 with each getLitValue() call (Lines 21-23).

VAL Implementation of WAH (VAL-WAH)

In VAL-WAH, each block in a word corresponds to a WAH fill or literal seg-

ment. As discussed previously, the flag bits for all blocks in the word are placed

in the word header. The number of blocks in a word depends on the segment

length used for encoding. Query execution for VAL-WAH follows the generic log-

ical operation presented in Algorithm 1. The specialization for WAH consists in

www.manaraa.com

43

the implementation of the decodeNextWord() method. Since several encoding seg-

ment lengths could be used, a complication during query processing is to execute

queries involving bitmaps encoded using different segment lengths. This is done

by parametrizing the decode method with an integer p that acts as a segment-

length conversion factor. The segment length used for decoding is 2p × s, where s

is the segment length used for encoding. The possible values of p depend on the

legal segments for encoding. For our current setup that allows segment lengths of

15, 30 and 60, p is in the interval [−2,2]. There are three cases: p < 0, p = 0, and

p > 0, which decode the current word into blocks using a smaller segment length,

the same segment length, or a larger segment length than it was used for encoding.

Specifically, p = 0 is used to decode segments with the same segment length as the

encoding, ∣p∣ = 1 is used to convert segment lengths between 15-30 and 30-60, while

∣p∣ = 2 is used to convert between 15-60.

Converting Segment Lengths

1000 000000000000000000101000001000 101010000000100000000000100001

 0010100000100001

000000000000000000101000001000

101010000000100000000000100001

1000 001010000010000

 10101000000010000

1010100000001000

 0000000001000010

000000000100001 ...

activeBlock s=30

new Block s=15

activeBlock s=30

new Block s=15

new Block s=15

64-bit VAL-WAH(s=30)

64-bit VAL-WAH(s=15)

Figure 3.5: Example of converting a 64-bit VAL compressed bit vector using s=30 down to
a 64-bit VAL compressed bit vector using segment s=15.

www.manaraa.com

44

In this section, we show how conversion between different segment lengths

is performed efficiently. During query execution, this conversion is performed on-

the-fly as the query is processed. The bitmaps are not re-encoded to a different

segment length explicitly. As mentioned before, segment lengths in LS can be

easily aligned during query execution since, larger lengths are always multiple

of smaller ones. The conversion factor between different segment lengths can be

expressed as m = 2∣p∣.

Given a VAL-compressed bit vector Xs encoded using segment length s,

we can easily convert Xs into Xs/m in the following way. Consider the conversion

using p = 1,m = 2 of X30 down to X15. A literal block in X30 will translate into two

literal blocks in X15. Similarly, a fill block in X30 with segment count nSegments

will translate into a single block in X15, with same fill bit and segment count equal

to nSegments ×m. Note that multiplications/divisions can be done using shift-

operations because m is a power of 2. The sign of p indicates whether we convert

up (p < 0) to a larger or convert down (p > 0) to a smaller segment, and thus

defining the direction of the shift operation.

Translating from smaller segments to larger ones is possible. For example

p = −1,m = 2 would translate X30 into X60. Two literal blocks in X30 will translate

into one literal block in X60. A fill block in X30 with segment count nSegments

will translate into one fill block inX60 with segment count equal to nSegments×m.

When the division has a remainder, a literal segment is generated with a literal rep-

resentation of the fill value for m-fraction of the word, and the rest of this decoded

www.manaraa.com

45

literal is completed using the next word in the vector.

Algorithm 2 shows the pseudocode to decode a word from a bit vector Xs

encoded using segment length s and produces the decoded activeBlocks using seg-

ment length m/s. There are two key data structures in this algorithm: activeWord

and activeBlock. The activeWord is an array containing the new decoded blocks, ,

an activeBlock.
Algorithm 2: A Method for Decoding Down (p > 0).

Input: Compressed word containing blocks of length s; N : the number of blocks in
the word; possible values 1,2, m = 2∣p∣: factor of the new segment length

Output: activeWord - VAL word containing decoded blocks using segments of
length s/m

1 for i = 1→ N do
2 activeBlock = ith block;
3 if activeBlock.isLiteral() then
4 for j = 1→m do
5 activeWord.addLiteral(activeBlock.value >>>
6 s × (N − i));
7 end
8 end
9 else

10 activeWord.addFill(activeBlock.value >>> (s − 1),
11 activeBlock.nSegments ×m);
12 end
13 end
14 return activeWord;

For p > 0, when decoding is done to a smaller segment length, there are two

possible cases for every block in the word being decoded:

• Case 1 (Lines 3-7): The activeBlock is a literal. In this case, the activeBlock is

divided into 2∣p∣ (for us, 2 or 4) literal blocks with smaller segment length and

added to the activeWord as literals. The activeWord will be iterated in the main

query processing function.

• Case 2 (Lines 8-10): The activeBlock is a fill. In this case, a single fill block is

www.manaraa.com

46

added with same fill value and the number of segments is multiplied by 2∣p∣

using a shift-left operation.

As an illustration of Algorithm 2, consider the bit vector in Figure 3.5. The

figure shows the conversion from s = 30 down to s = 15. First, the fill block with

zeros is stored into a fill block with s = 15 and double the number of segments.

Then the second block in the word is stored into two literals with s = 15. Note that,

since decoding is done in memory only and nSegments is a 64-bit number, the

multiplication of the number of segments in the fills from larger segments lengths

to smaller lengths never require extra segments to encode the fills.

Now let us consider the case where p < 0 for converting from a smaller

segment length s up to a larger segment length s × m. The pseudocode for this

decoding algorithm is shown in Algorithm 3. Here, it is required to add one more

structure that allows us to temporarily store partial words. alignedBlock also serves

as a buffer for storing leftover bits from previous blocks, when the division of

nSegments by m has a non-zero remainder. For every block contained in the word

being decoded, we have several cases:

• Case 1 (Lines 3-6): The alignedBlock is empty, , there are no bits left from

the previous decoded block or word. If the activeBlock is a literal, then it is

added to the alignedBlock as a literal and the alignedBlock is marked to be

incomplete. The alignedBlock is not yet added to the activeWord.

• Case 2 (Lines 7-11): The alignedBlock is empty and the activeBlock is a fill,

www.manaraa.com

47

then its fill is added to allignedWord with a factor of m less nSegments. The

alignedBlock used to store the remainder bits from the division by m. They

are stored as s bits in a literal.

Algorithm 3: A Method for Decoding Up (p < 0).
Input: Compressed word containing blocks of length s; N : the number of blocks in

the word; possible values 1,2, m = 2∣p∣: factor of the new segment length
Output: activeWord - VAL Word containing decoded blocks of length s ×m

1 for i = 1→ N do
2 activeBlock= i’th block;
3 if alignedBlock.nSegments=0 then
4 if activeBlock.isLiteral() then
5 alignedBlock.addLiteral(activeBlock.value)
6 end
7 else
8 activeWord.addFillBlock(activeBlock.fill, activeBlock.nSegments/m);
9 store the leftover bits in alignedBlock, if any

10 end
11 end
12 else
13 if activeBlock.isLiteral() then
14 alignedBlock.addLiteral(activeBlock.value);
15 if alignedBlock.isComplete() then
16 activeWord.addLiteralBlock(alignedBlock.value) alignedBlock.clear()
17 end
18 end
19 else
20 while alignedBlock.isNotComplete() do
21 alignedBlock.addLiteral(activeBlock.fill) activeBlock.nSegments- -
22 end
23 activeWord.addLiteralBlock(alignedBlock) alignedBlock.clear()

activeWord.addFill(activeBlock.fill, activeBlock.nSegments/m) store the
leftover bits in alignedBlock, if any

24 end
25 end
26 end
27 return activeWord

• Case 3 (Lines 12-18): The alignedBlock is not empty, , there are leftover literal

bits from a previous block, and activeBlock is also a literal. In this case, the

activeBlock is appended to alignedBlock. If the alignedBlock is filled with s ×m

www.manaraa.com

48

bits, then it is added to the activeWord and cleared.

• Case 4 (Lines 19-25): The alignedBlock is a literal and activeBlock is a fill. In this

case, the alignedBlock is appended with literals from the activeBlock until it is

filled with s ×m bits. The alignedBlock is appended to activeWord as a literal

block. Then the remaining blocks in activeBlock are appended to activeWord

as a fill. If there are any leftover bits from dividing the remaining blocks by

m, then they are stored as a literal in alignedBlock.

Aligning blocks with different compression lengths poses a small overhead

in the VAL query processing algorithm. However, in general, VAL compresses

better and often requires fewer iterations to complete the query, as described in

Algorithm 1. This translates into performance benefits not only in terms of com-

pression ratio, but also in terms of total query time execution when compared to

WAH.

To help simplify the discussion on trade-off, we combine compression ratio

and query time ratio into a single metric, gain. Presuming that speedup and com-

pression rates are equally weighed, we can use the harmonic mean HM of the two

ratios,

gain = 1

HM

= query ratio + compression ratio
2 × query ratio × compression ratio

Because the harmonic mean emphasizes the smaller ratio, it captures the combined

rate of speedup and compression more faithfully than an arithmetic mean. Fur-

www.manaraa.com

49

thermore, we inverted HM so that the larger values imply better performance, and

the goal would be to show higher gain. The gain across all datasets is presented

in Figure 3.6. The combined gain of VAL-WAH is higher than the other encoding

methods. The results for sorted and non-sorted bitmaps are shown in Figure 3.6

and Figure 3.7

0

100

200

300

400

500

600

kddcup berkeley earth zipf2 zipf1

G
ai

n

PLWAH 32 EWAH32 WAH 32 VAL 0.2

Figure 3.6: Combined Gain for Sorted Bitmaps.

To conclude, VAL enables several run-length aligned compression algo-

rithms to coexist together and extends them to allow variable segment lengths.

Efficient query execution algorithms over bitmaps compressed using different en-

coding lengths are proposed. A user-defined λ parameter allows users to adjust the

trade-off between compressed index size versus expected query execution speed.

As a proof of concept we implemented WAH within the framework and performed

www.manaraa.com

50

0

10

20

30

40

50

60

kddcup berkeley earth zipf2 zipf1

G
ai

n

PLWAH32 EWAH32 WAH 32 VAL 0.2

Figure 3.7: Combined Gain for Non-sorted Bitmaps.

an extensive performance evaluation. This VAL-WAH approach is very effective

for sorted data, particularly for skewed data distributions and is able to outper-

form WAH. We also show that net gains can be obtained when applying this frame-

work to non-sorted data especially for high-cardinality attributes. The flexibility of

having variable segment lengths but still maintaining the alignment of the blocks

and the segments in the bitmap are the key of the success of the proposed frame-

work.

3.3 Hybrid compression for hard-to-compress bit-vectors

When considering compressing the bit-vectors, it is important to take into

account the effects of compression. As shown in the previous section, highly

compressible bit-vectors can exhibit faster query times than the non-compressed

ones [41]. Nonetheless, the BSI bit-vectors are usually dense and hard-to-compress.

www.manaraa.com

51

Therefore, compression would not always speed up queries and could add con-

siderable overhead. In these cases, bit-vectors are often stored verbatim (non-

compressed).

On the other hand, queries are answered by executing a cascade of bit-wise

operations involving indexed bit-vectors and intermediate results. Often, even

when the original bit-vectors are hard-to-compress, the intermediate results be-

come sparse. It could be feasible to improve query performance by compressing

these bit-vectors as the query is executed. In this scenario it would be necessary to

operate verbatim and compressed bit-vectors together.

Considering the above, we propose to compress the BSI bit-slices using a

hybrid compression scheme [38], which is a mix between the verbatim scheme

and the EWAH/WBC bitmap compression. Bit-vectors are only compressed when

the compression can improve the query time, otherwise the bit-vectors are left ver-

batim. The query optimizer described in [38] is able to decide at run time when to

compress or decompress a bit-vector, in order to achieve faster queries. Queries can

benefit from compression when the decoding of compressed bit-vectors is faster

than reading a full verbatim vector, and also through less memory utilization. In

the next chapter we describe in detail a way to speed-up basic operations between

bit-vectors(such as intersections, unions and exclusions) by alternating the use of

compressed and verbatim bit-vectors.

www.manaraa.com

52

CHAPTER 4
QUERY PROCESSING AND OPTIMIZATION

For more complex queries such as aggregations, the BSI index is shown to

perform the best in most cases [15]. Since a bitmap representing a set of rows is

the simplest bit-sliced index, it is a straightforward way to determine multisets of

rows resulting from the SQL clauses UNION ALL (addition), EXCEPT ALL (sub-

traction), and INTERSECT ALL (min). Also for the WHERE clause in SQL, for

extracting values that are greater or less than a certain value, it is possible to only

operate with a few bit-slices, and not the entire attribute. For this purpose we use

and extend the bit-sliced index arithmetic described in [23], for operations such as

sum, subtraction, min, max, average, count.

In a distributed environment, these operations are performed locally on

multiple nodes in parallel. However, it is important to find the best trade-off be-

tween parallelism and network communication. In the next sections we describe

the execution of aggregations and preference queries, first on a single machine,

and then on a cluster.

This chapter first describes a methodology to optimize bit-wise operations

between dense bit-vectors, such as those found in the BSI index. Then these atomic

bit-wise operations are used to execute more complex queries in centralized envi-

ronments.

www.manaraa.com

53

4.1 Bitwise operation optimization using hybrid compression

In the previous chapter it was mentioned that dense bit-vectors could ben-

efit from a compression scheme that alternates between verbatim and compressed

bit-vectors. Further we describe a query optimizer that decides during query exe-

cution whether to compress the resulting bit-vector of a bitwise operation or not. It

turns out that by compression only the best bit-vector candidates can help speed-

up the query significantly.

Consider a relational database D with m attributes and n tuples. Bitmap

indices are built over each attribute value or range of values and stored column-

wise. Query processing over bitmaps is done by executing bit-wise operations

over one or more bitmap columns.

A selection query is a set of conditions of the form A op v, where A is an

attribute, op ∈ {=;<;≤;>;≥} is the operator, and v is the value queried. We refer to

point queries as the queries that use the equal operator (A = v) for all conditions

and range queries to the queries using a between condition (e.g. v1 ≤ A ≤ v2).

The values queried, vi, are mapped to bitmap bins, bi, for each attribute. If

the bitmaps correspond to the same attribute then the resulting bitmaps are ORed

together, otherwise they are ANDed together. In the case of selection queries, the

resulting bitmap has set bits for the tuples that satisfy the query constraints.

Equality encoded bitmaps can support selection queries and have been shown

to be optimal for point queries. These bitmaps are sparse (even more for higher

cardinalities), and therefore can benefit from compression. However, compression

www.manaraa.com

54

comes with a cost during query processing since it requires more time to decode

the columns. In some cases, however, compression can speed up the queries and

also reduce the space footprint of the bitmaps. This is typically the case for highly

compressed columns. For very hard to compress bitmaps, where the number of

set bits is higher, compression may not able to reduce the size but still imposes an

overhead during query time.

Consider for example a dataset uniformly distributed where each one of

100 attributes is divided into two bins. Each bitmap column individually is not

able to compress at all (as the expected bit-density is 0.5). In this case, it may

seem beneficial to store the bitmaps as verbatim bitmaps, uncompressed, therefore

avoiding decoding overhead during query time. However, consider a point query

over several of the dimensions for the same data-set. The expected density quickly

decreases with each added dimension. For 4, 10, and 20 attributes queried the

expected density for a point query would be 0.06, 0.001, and 0.000001, respectively.

In this case, the use of compression would speed up the query considerable as the

number of dimensions increases.

Our goal is to design a space where verbatim and compressed bit-vectors

can be queried together and compression is used not only to reduce space but also

to speed up query time.

In order to enable this hybrid query processing, the bitmap index represen-

tation is extended with a header word. The first bit in this word is the flag bit, e,

to indicate whether the bitmap column is stored verbatim (e = 0) or compressed

www.manaraa.com

55

(e = 1); and the remaining w − 1 bits store the number of set bits in the bitmap. The

number of set bits is used to estimate the density of the resulting bitmap during

query optimization as described in the next section.

In our hybrid space, there are three possibilities when operating two bit-

vectors: both of them are compressed, both are verbatim, or one is verbatim and

the other one is compressed. The first two cases (both compressed or both ver-

batim) present no challenge since the operations for these cases already exist. We

developed query algorithms that operate an EWAH compressed bit-vector with a

verbatim bitmap. We chose EWAH as our compression scheme because its word

length is equal to the computer word length (w) used for verbatim bitmaps. Thus,

by using EWAH we maintain the alignment with the verbatim bitmaps.

Algorithm 4 shows the pseudo-code for a general bit-wise operation ○ be-

tween two bit-vectors: one compressed and the other verbatim, and produces a

result that can be either verbatim or compressed. The input bit-vectors C and V

correspond to the compressed and verbatim bit-vectors, respectively. While C has

a more complex data structure and requires more sophisticated access to its words,

V represents a simple array and its words can be accessed directly without any de-

coding required. This is the reason our hybrid model is able to speed up query

execution of hard-to-compress bitmaps when compared to EWAH or other bitmap

compression methods, as there is no decoding overhead for bit-vector V . The size

of C is always smaller than or equal to the size of V , and thus Algorithm 4 will

perform maximum ∣C ∣ iterations for the AND operations and maximum ∣V ∣ itera-

www.manaraa.com

56

tions for the OR and XOR operations. Where ∣C ∣ is the size of C, and ∣V ∣ is the size

of V in words.

Algorithm 4: Operation of a compressed bit-vector C with a verbatim bit-vector V .
Input: C,V
Output: R

1 pos = 0 ;
2 while C has more words do
3 R.appendWords(C.runningBit ○ V.sub(pos,C.runLen), C.runLen);
4 pos+ = C.runLen;
5 for i=1 to C.NofLiterals do
6 R.append(C.activeWord ○ V [pos]);
7 pos++;
8 end
9 end

10 return R

Having defined the input data for Algorithm 4 we will now proceed to de-

scribe its steps. Because EWAH starts always with a marker word, Algorithm 4

starts by processing this word. Recall that half of the marker word stores the fill

count (runLen in the Algorithm) and the other half stores the number of follow-

ing literals (NofLiterals in the Algorithm). The fill count and the bit value for

run of fills together with the corresponding words from the verbatim bitmap are

passed into the appendWords method (Line 3). This method, depending on the fill

bit value and the logical operation to be performed ○, will add a stream of homoge-

neous bits, or a stream of values resulting from operating the fill bit with the words

from V . This number of consecutive words is equal to the fill count that was just

www.manaraa.com

57

decoded. Next, the active position pos within V is updated (Line 4). Then, each of

the following literal words in C (Line 5) is operated with the corresponding word

in V (Line 6), and the active position within V is updated (Line 7). After the consec-

utive literals in C are exhausted, the next word in C will be again a marker word

and Algorithm 4 iterates to Line 3 until all the words in the compressed bitmap C

have been exhausted.

The append procedures (Lines 3 and 6) encode the resulting word(s) into the

result bitmap R, which could be EWAH compressed or verbatim. The algorithm

to decide whether the result should be compressed or not is discussed in the next

section.

Note that the running time for the Hybrid algorithm described above is

proportional to the size of the compressed bitmap for intersections (AND) and

complement (NOT) operations, and proportional to the non-compressed bitmap

for union (OR) and XOR operations.

Our goal in this work is to identify the cases where it is beneficial to operate

a bit-vector in a compressed form or in a verbatim form. We shall compress if com-

pression can improve, or does not degrade the query time. Our assumption is that

if Algorithm 4 is called, the compressed bitmap is sparse (compression reduces

the size considerably) and the verbatim bitmap is dense (marginal or no benefit

from compression). In this case, operating a verbatim and compressed bitmap to-

gether would be more efficient than operating two-compressed or two-verbatim

bitmaps together. Operating two verbatim bitmaps requires the traversal of the

www.manaraa.com

58

entire bitmap regardless of the bit-density. Thus, the proposed hybrid algorithm

opens the possibility to reduce the memory requirement during query processing

and speed up the query at the same time. The next section describes how this hy-

brid scheme can be exploited to improve the query performance over bit-vectors.

4.1.1 Query optimizer

Let us identified the three cases when operating two bitmap columns as VV

when both of them are verbatim, CC when both of them are compressed, and as

VC the hybrid case, when one of them is verbatim and the other is compressed.

Regardless of the input format, the result of operating two bitmap columns can

be encoded either as a verbatim bitmap or as a compressed one. The decision of

whether the result should be compressed or not is made by the query optimizer as

described next.

Let us denote by n the number of bits in each bitmap, and by si the number

of set bits in bitmap i. The bit-density is then defined as di = si
n . The bitmap

encoding format, verbatim (0) or compressed (1), is denoted by the flag bit ei.

Consider the bit-vectorsB1 andB2 with bit-densities d1 and d2, respectively.

Algorithm 5 shows the pseudo-code for query optimization of the binary bit-wise

operations. Given two bitmaps B1 and B2 with bit-density and stored format

(d1, e1) and (d2, e2), respectively and a bit-wise operation OP ∈ {AND,XOR,OR},

our query optimization algorithm estimates the resulting bit-density d and decides

whether the result should be compressed (e = 1). The density parameters α,β,andγ

www.manaraa.com

59

are used to indicate the maximum bit-density for which compressing the resulting

bit-vector from AND, OR, and XOR operations, would be beneficial for subsequent

operations.

Algorithm 5: Query optimization for AND, OR, and XOR bitwise operations.
Input: d1, d2, e1, e2,OP
Output: d, e

1 e = 0;
2 if (OP == AND) then
3 d = d1d2;
4 if (d < α)∥ d > 1 − α) then
5 e = 1;
6 end
7 end
8 else if (OP == OR) then
9 d = d1 + d2 − d1d2 ; // d=d1+d2 for equality bitmaps from same attribute

10 if ((e1 == 1 & e2 == 1 & (d < β)∥(d > (1 − β)))) then
11 e = 1;
12 end
13 end
14 else if (OP == XOR) then
15 d = d1(1 − d2) + (1 − d1)d2;
16 if ((e1 == 1 & e2 == 1 & (d < γ)∥(d > (1 − γ)))) then
17 e = 1;
18 end
19 end

By default the encoding format of the result is verbatim (Line 1).

For ANDs (Lines 2-7), the result is compressed when the expected density

of the resulting bitmap is smaller than α or it is larger than 1 − α. It is easy to see

that for ANDs, the number of 1s in the result will always be less than or equal to

the bitmap with smaller number of 1s.

www.manaraa.com

60

For ORs (Lines 8-13), the result is compressed only when the two input

bitmaps are compressed and the expected density of the result is smaller than β, or

when the expected density of the result is greater than 1−β. For ORs, the number of

ones in the result is at least the number of ones in the bitmap with a larger number

of 1s. If either one of the bitmaps is not compressed chances are that the result

should not be compressed either. The other extreme is the case when the number

of set bits in the results is so high that runs of 1s can be compressed efficiently. The

comparison with 1 − β allows us to compress bitmaps with a bit-density close to 1.

For XORs (Lines 14-19), the result is compressed only when the two input

bitmaps are compressed and the expected density is smaller than γ or greater than

1−γ for the same reasons discussed previously for the OR operation. OR and XOR

operations exhibit the same performance behavior.

For both, OR and XOR operations, both input bit-vectors have to be com-

pressed in order to output a compressed result. Otherwise, there is an overhead to

the query if the result is compressed at low bit-densities.

In the case of the NOT operation, the complement bitmap is kept in the same

form as the input bitmap, i.e. if the input bitmap is compressed, the complement

bitmap would also be compressed.

4.1.2 The Threshold Parameters α, β, and γ

The values for α, β, and γ should be sensitive enough to trigger the com-

pression of the resulting bitmap without degrading the query performance.

www.manaraa.com

61

The append procedure from Algorithm 4, line 6, is responsible for append-

ing a literal or a fill to the resulting bitmap. Given the decision taken in Algorithm

5, this procedure can append to a compressed bitmap or to a verbatim bitmap.

Appending to a verbatim bitmap takes constant time. However appending to a

compressed bitmap is more expensive. Previous evaluation of the EWAH open

source algorithm [42] , shows that appendLiteral and appendFill for EWAH use

on average 3 to 4 conditional branching instructions, and takes up to 5 to 15 times

longer to execute than a simple append to a non-compressed bitmap [43]. The

construction of the resulting bitmap in a bit-wise operation will be proportional

to the size of the input bitmaps [27]. Considering this, we shall select α, β, and γ

depending on the bit-density of the output bitmaps, which can be estimated from

the input vector densities. The decision about compressing the result should be

considered when the input bit-vectors have a density that allows to have a com-

pression ratio of between 0.2 to 0.06 or better(1
5 and 1

15). Further we will work

with bitmap densities instead of compression ratios because we operate with both,

compressed and verbatim bitmap.

For a uniformly distributed EWAH bitmap vector x, the compression ratio

can be estimated as:

CRx ≈ 1 − (1 − dx)2w − d2wx

where, CRx is the compression ratio (compressed/non-compressed), dx is

the bit density for bitmap vector x, and w is the word length used for run length

encoding. In this work we use w=64 to match the computer architecture of our ex-

www.manaraa.com

62

perimental environment. To compensate for the overhead of compressing the bit-

vector, the expected compression ratio should be between 0.2 and 0.06, obtained

when d is between 0.0005 and 0.002.

For the unions, we choose the more conservative boundary. Thus, if the

denser bit-vector has a density smaller than or equal to 0.0005, then the maximum

density the result can have is 0.001 and the minimum can be 0.0005. The resulting

bit-vector has the maximum possible density when none of the set-bit positions

coincide in the operated bit-vectors. The minimum possible density for the result

occurs when all the set-bits have the same positions for both bit-vectors being op-

erated. Hence we pick β, and γ to be between these two values.

For the intersections, we want a more aggressive compression policy. If

the sparser input bit-vector has a density smaller than or equal to 0.002, then the

maximum probable density of the resulting bit-vector is 0.002. This is the case

when both bit-vectors being operated have the same set-bit positions. Because this

rarely happens, we can set a lower threshold for α and compress the result more

aggressively.

4.1.3 Bit-Density Estimation

The bit-densities of the input bitmaps are used to decide whether the re-

sult should be compressed or left as a verbatim (uncompressed) bitmap. For the

indexed bitmaps we store the number of set positions and the densities are eas-

ily computed. However, for the subsequent query operations involving the re-

www.manaraa.com

63

sulting bitmaps, we use estimated bit-densities, as computing the actual densities

can be expensive. The expected density of the resulting bitmap is estimated us-

ing the densities of the input bitmaps. In this work we assume that the distri-

bution of the set bits in the two input bitmaps are independent and compute the

expected density using the probability of set bits in the result bitmaps. It is typical

for query optimizers to make this assumption in query selectivity estimations and

even when for most real datasets not all the attributes are independent, this esti-

mation gives reasonable performance as we will show in the experimental results

over real datasets.

For the NOT operation, the bit density can be computed easily since the

number of set bits in the complement of bitmap B1 would be n − s1 as:

dNOT = 1 − d1

The bit-density of the bitmap resulting from ANDing the two bit-vectors

can be computed as the product of the two bit-densities. This is the probability

that the same bit is set for both bit-vectors:

dAND = d1 × d2

Similarly, the bit-density of the bitmap resulting from ORing the two bit-

vectors can be computed as the sum of the two bit-densities. This is the probability

that the bit is set for either one of the bit-vectors minus the probability that the bit

www.manaraa.com

64

is set in both bit-vectors:

dOR = d1 + d2 − d1d2

This is how the expected density is computed when bitmaps from different

attributes are ORed together and for all BSI encoded bitmaps. For equality en-

coded bitmaps, however, since only one bit is set for all the bitmaps of an attribute,

d1d2 is known to be zero and the bit-density in the case when two bitmaps from

the same attribute are ORed together is estimated by:

d′OR = d1 + d2

For XOR, the bit-density of the resulting bitmap corresponds to the proba-

bility that only one bit is set between the two bitmaps and can be estimated as:

dXOR = d1(1 − d2) + (1 − d1)d2

Evaluation of the optimizer

To measure the overhead of our query optimizer we set-up a scenario where

the hybrid model should have exactly the same running time (if neglecting the

overhead imposed by the optimizer) as when operating with only verbatim bitmaps

or only compressed bitmaps. Multi-dimensional queries involving a variable num-

ber of bitmaps (between 2 and 10) were executed for AND, OR, and XOR opera-

tions and the results are shown in Figure 4.1.

www.manaraa.com

65

Figure 4.1: The query overhead created when the optimizer cannot improve query time.

For the AND queries we randomly generated uniform distributed low den-

sity bitmaps (d = 10−4) with 100M bits. Since these bitmaps are highly compressible,

the hybrid model starts only with compressed(EWAH) bitmaps. Because the AND

optimization keeps the result compressed when the input is compressed, and the

density is below the threshold, our optimizer always keeps the result as a com-

pressed bitmap. We measured the time required by our hybrid model to execute

45 AND queries and run the same set of queries using only compressed bitmaps.

The difference is reported as the optimization overhead.

Following the same methodology, for OR and XOR operations we generated

uniformly distributed high-density bitmaps (d ≈ 0.05) with 100M bits and present

the cumulative query time of 45 queries. Because when performing OR and XOR

operations over these bitmaps the results are not compressible, our query opti-

mizer keeps the results as verbatim. We ran the same set of queries over verbatim

www.manaraa.com

66

0.00

20.00

40.00

60.00

80.00

100.00

Uniform Zipf-1 Zipf-3 Kegg Poker Internet

Ti
m
e
(m

s)

Correction@1 Correction@10 Correction@20 Estimated

Figure 4.2: Top-K query times for datasets with average attribute correlation:
[Uniform=0.0002]; [Zipf-1=0.0003]; [Zipf-3=0.00032]; [Keg=0.26]; [Poker=0.02]; [Inter-
net=0.024].

bitmaps and report the difference as the optimization overhead.

As Figure 4.1 shows, the overhead that the query optimizer brings is very

modest (around 0.2%). It is worth noting that this is a worse case scenario where

the optimizer cannot improve the query time over the non-hybrid model. As we

will see in the next experiments, the overhead is more than justified by the overall

improvement in query time and memory utilization.

To evaluate the effect of our bit-vector independence assumption, we com-

pare the decisions made by the optimizer using the estimated density against the

decisions made using the densities of the intermediate results by computing them

at query time. Then we count the number of times the estimations led to a differ-

ent decision than the actual computed densities. Table 4.1 shows the number of

mismatches for real datasets when performing the top-k queries.

One could argue that simply computing the bit-vectors density will never

www.manaraa.com

67

Table 4.1: Percentage of mismatch optimization decisions
when using estimated vs. measured density for the inter-
mediate results.

Dataset HIGGS Kegg Network
Total operations 823 252 311
Number of mismatches 4 8 18
Mismatch % 0.48 3.2 5.8

produce errors, and could offset the computing time by always taking the “right”

decision, and producing faster queries. To verify if this is the case, we set to mea-

sure the top-k query times for six datasets (3 synthetically generated, and 3 real),

one of which has high attribute correlation. The average attribute correlation for

the Kegg dataset is 0.26, however the correlation between some attributes is as high

as 0.7. Figure 4.2 shows the top-k query times for the six datasets. The Uniform,

Zipf-1, and Zipf-3 are synthetically generated datasets, while Kegg, Poker, and

Internet are real datasets. The average attribute correlation is provided in the

figure description. In this figure we compare the query time when using density

estimation, and when computing the bit-vector density. We also measure the query

time for a combination between the two approaches to determine the density of the

resulting bit-vector. Correction@10 means that if one of the bit-vectors being oper-

ated has its density resulted from previous 9 bit-wise operations using estimation,

then the 10th bit-wise operation will use a scan and compute. For Correction@20

the density calculation is used every 20th operation. We use this technique for di-

minishing the effects of density estimation error propagation. Even if we make

use of the POPCNT CPU instruction when computing the bit-vectors cardinality,

www.manaraa.com

68

the estimation still outperforms the other approaches, even for highly correlated

datasets, where there may be a higher density estimation error.

4.1.4 Beyond bit-wise operations

The density estimation methods for the set of basic operations supported

by bitmap indices shall be sufficient for computing the bit-vector densities in more

complex queries. For a bit-vector based index, a more complex query is usually

composed by a cascade of basic bit-vector operations (intersections, unions, com-

plements, exclusions). For instance, a range query may contain a series of unions,

or a point query may contain several intersections.

Our hybrid compression method is designed to work with hard-to-compress

bit-vectors. The bit-sliced index is a bit-vector index that is hard-to-compress be-

cause of a high set-bit density. It is usually preferred over the bitmap index when

working with high cardinality domains. Some of the queries supported by the bit-

sliced index are: range queries, aggregations, top-k, and term matching queries.

The more complex queries such as top-k preference queries aim to retrieve a

small portion of the data, and at the same time they involve a high number of basic

bit-vector operations. This means that the final result, as well as many intermediate

results from the bit-wise operations, produce low density bit-vectors. This is one

of the cases when the hybrid query optimizer can help speeding up the query, and

reduce the memory utilization, by compressing the sparse intermediate results.

In the following experiments we use three synthetically generated datasets

www.manaraa.com

69

and also real datasets, to cover a large enough range of distributions and densities.

We present the results in terms of top-k query time and memory utilization. We

focus on memory utilization rather than on the index size because the BSI index is

usually a high-density bitmap index and hard to compress. However, because the

bit-slices are operated multiple times, the intermediate results can become sparser

and there are opportunities for compression. We also add for comparison a naı̈ve

Hybrid method that compresses the intermediate result if it can achieve a com-

pression ratio of 0.5 or better. This is denoted by H-0.5 in our figures. For the

Hybrid method (H) we set the initial threshold T to 0.5. However this is appli-

cation dependent and can be changed depending on the need for space or faster

queries.

Figure 4.3 shows the results in terms of execution time and memory utiliza-

tion over synthetic data when top k queries are executed over BSI indices. The

datasets contain 5 attributes with normalized values with 6 decimal positions, 10

million rows, and generated using three different distributions: uniform, zipf-1

(f=1) and zipf-3 (f=3).

For the uniform data-set (Figure 4.3a), The index had 100 slices, an average

of 20 slices per attribute. Only the Roaring bitmap was able to compress the initial

index, with a compression ratio of 0.64, however in terms of Top-K query times it

was two times slower than the Hybrid. The Hybrid scheme, also was faster than

the verbatim by about 2%. In terms of memory utilization, the Hybrid performed

similarly to WAH and EWAH, however it was several times faster (3.6x faster than

www.manaraa.com

70

EWAH and 6.6x faster than WAH).

With the zipf-1 skewed dataset, results showed in Figure 4.3b, the results

were similar to those Figure 4.3a.

(a) Uniform distribution (b) Zipf distribution (f = 1) (c) Zipf distribution (f = 3)

Figure 4.3: TopK queries over synthetic datasets with 5 attributes, 10M rows. Each attribute
is represented by a BSI with 20 slices (normalized values with 6 decimal positions).

(a) Higgs dataset (b) Kegg dataset (c) Network dataset

Figure 4.4: TopK queries over real datasets.

For the zipf distribution with f=3 (Figure 4.3c), the skew in the data is sig-

nificantly higher than in zip-1 and thus the bit-slices are highly compressible. Hav-

www.manaraa.com

71

ing the compression threshold T set to 0.5, the Hybrid started with 79 compressed

bit-slices out of 100. As shown in Figure 4.3c, even if the Verbatim scheme has

a very forthright query algorithm without requiring any decoding/encoding, the

execution time for the top-K queries is 2 times higher than the Hybrid scheme.

This again underlines the potential of compression not just for storage-space pur-

poses but also for speeding up processing. At the same time, The Hybrid was 2.8

times faster than the Roaring bitmap, even if the Roaring bitmap compressed the

bit-slices better. The Hybrid scheme also used only 5% more memory than WAH

and EWAH and was 4.3 times faster than WAH and 3 times faster than EWAH.

Furthermore, to show that our synthetically generated data-sets accurately

represent the performance gains that can be obtained over real-world data, we

perform top-K queries over the real data-sets described at the beginning of this

section. The results in terms of of execution time and memory utilization for the

real data-sets are shown in Figure 4.4.

For the Higgs dataset, the bit-sliced index contains 607 bit-slices(an average

of 29 slices per attribute). The BSI-sum algorithm [38], together with the top-K

algorithm performed 234 XOR operations, 345 AND operations and 244 OR oper-

ations for this dataset. From a total of 823 logical operations executed, 131 of their

results were compressed and 692 were not. The Hybrid scheme was 5% faster and

used 7% less memory than the Verbatim scheme, was 14% faster and used 33%

more memory than the Roaring bitmap. When compared to WAH and EWAH, the

Hybrid scheme, was 5 times faster than EWAH and an order of magnitude faster

www.manaraa.com

72

than WAH, while using under 1% more memory than these two schemes.

The bit-sliced index for the Kegg dataset has 243 bit-slices, and the Hybrid

compressed 44 of them, to start with. From a total of 252 logical operations per-

formed, the Hybrid compressed 26 of their results, and 226 where not compressed.

The BSI-sum algorithm [38], together with the top-K algorithm performed 86 XOR

operations, 110 AND operations and 68 OR operations for this dataset. In terms of

query time, the Hybrid outperformed all the other schemes. It was 5% faster than

Verbatim, 3 times faster than Roaring, 1.7 times faster than H-0.5, 8.2 times faster

than WAH, and 7.5 times faster than EWAH.

The network data-set is in a way similar to the zipf-3 data, its values having

a higher skewing factor. The bit-sliced index for the network has 207 bit-slices,

and the Hybrid compressed all of them, to start with. From a total of 311 logical

operations performed, the Hybrid compressed 197 of their results, and 114 where

not compressed. The BSI-sum algorithm [38], together with the top-K algorithm

performed 104 XOR operations, 139 AND operations and 68 OR operations for this

dataset.

Evaluations of the hybrid compression show that the hybrid approach al-

ways outperforms the use of verbatim only bit-vector in terms of both, query time

and memory utilization. At the same time, the evaluations show the scenarios

when this model can outperform compressed only bitmaps. For the top-K queries

performed over real data-sets we achieved up to an order of magnitude faster

queries when compared to the run-length compressed schemes, and up to 11 times

www.manaraa.com

73

less memory used when compared to the verbatim scheme. However, further in-

vestigation regarding the value of the parameters α,β, and γ is necessary.

4.2 Complex queries using Bit-sliced Indices (BSI)

In addition to range and point selection queries we take on investigating the

performance of bit-vector indices on more complex queries, such as aggregations,

K-Nearest Neighbors(K-NN), collaborative filtering, and preference queries. As a

proof of concept, we implement the necessary distributed BSI arithmetic logic for

performing such queries over the BSI index.

4.2.1 Top-K Preference queries

Top-k (preference) queries are used in several domains to retrieve the set of

k tuples that match the best with a given query. For high-dimensional spaces, eval-

uation of top-k queries is expensive, as data and space partitioning indices perform

worse than sequential scan. An alternative approach is the use of sorted lists to

speed up query evaluation. This approach extends performance gains when com-

pared to sequential scan to about ten dimensions. However, data-sets for which

preference queries are considered, often are high-dimensional.

We explore the use of bit-sliced indices (BSI) to encode the attributes or score

lists and perform top-k queries over high-dimensional data using bit-wise opera-

tions [44]. Our approach does not require sorting or random access to the index.

Additionally, bit-sliced indices require less space than other type of indices. The

size of the bit-sliced index (without using compression) for a normalized data-set

www.manaraa.com

74

with 3 decimals is 60 times smaller than the size of sorted lists. Furthermore, our

experimental evaluation shows that the use of BSI for top-k query processing is

more efficient than Sequential Scan for high-dimensional data. When compared to

Sequential Top-k Algorithm (STA), BSI is one order of magnitude faster. Figure 4.6

shows the query times for executing top-k preference queries over the BSI index,

and how it compares with existing state of the art approaches.

Consider a relation R with m attributes or numeric scores and a preference

query vector Q = {q1, . . . , qm} with m values where 0 ≤ qi ≤ 1. Each data item or

tuple t inR has numeric scores {f1 (t) , . . . , fm (t)} assigned by numeric component

scoring functions {f1, . . . , fm}. The combined score of t is:

F (t) = E (q1 × f1 (t) , . . . , qm × fm (t)) where E is a numeric-valued expression. F is

monotone if E (x1, . . . , xm) ≤ E (y1, . . . , ym) whenever xi ≤ yi for all i. In this paper

we considerE to be the summation function: F (t) = ∑mi=1 qi×fi (t). The k data items

whose overall scores are the highest among all data items, are called the top-k data

items. We refer to the definition above as top-k weighted preference query.

Let us denote byBi the bit-sliced index (BSI) over each attribute i. A number

of slices s is used to represent values from 0 to 2s − 1. Bi[j] represents the jth bit in

the binary representation of the attribute value and it is a binary vector containing

n bits (one for each tuple). The bits are packed into words, the storage requirement

for each binary vector is n/w, where w is the computer architecture word size (64

in our implementation).

In order to compute the score for each data point we first multiply the at-

www.manaraa.com

75

Algorithm 6: Preference query execution using bit-slices. B is the set of all
BSIs, q is the query vector, and k is the desired number of results.

prefQuery (B,q,k)
1: if (k < 0)
2: Error (“k is invalid”)
3: S = Multiply (qj,Bj) where j is the first non-zero weight in q
4: for (i = j + 1; i ≤m; i++)
5: if qi > 0
6: S = SUM BSI(S, Multiply (qi,Bi))
7: T = TopK (S, k)
8: return T

tribute value by the query preference for that attribute using bit-wise operations.

Given a query Q, the query vector is first converted to integer weights based on

the desired precision. Let us denote by b, the number of bits used to represent a

query preference. The preference query execution algorithm pseudo-code is given

in Algorithm 6. The Multiply, SUM BSI, and TopK operations called in this algo-

rithm are performed over the BSI index, and are described in more detail in [23]

and [44].

We identify three main parts in our main algorithm 6:

1. For all non-zero weights, multiply the BSI for the attribute with the corre-

sponding query weight (Lines 3 and 6, and steps 1-6 in Figure 4.5).

2. Sum the partial scores produced by the Multiply algorithm into a BSI S (Line

6, and steps 7-9 in Figure 4.5).

3. Find the top k data points given the final BSI score S (step 10 in Figure 4.5).

www.manaraa.com

76

Figure 4.5 illustrates the steps necessary to perform a weighted top-K query over

the BSI index.

ID White Black

1 7 2
2 1 4
3 4 3
4 3 5
5 6 4
...

1 1 1

0 0 1

1 0 0

0 1 1

1 1 0

0 1 0

1 0 0

0 1 1

1 0 1

1 0 0

0.4 0.6

Weighted Query

1 0 0 1 1 0

1 1 1 0 0

0 0 1 0 0

1 0 0 0 0

0 1 1 0 0

1 1 0 0 0

0 1 0 0

1 0 0 0

0 1 1 0

1 0 1 0

1 0 0 0

0 1 0 0 0

1 0 0 0 0

0 1 1 0 0

1 0 1 0 0

1 0 0 0 0

Data and query in decimal

Data and query in binary

+ +

1 0 1 0 0 0

0 1 1 1 0 0

1 0 0 0 1 0

1 0 1 0 1 0

1 1 0 0 0 0

=

Addition using BSA

ID White Black

1 7 2
2 1 4
3 4 3
4 3 5
5 6 4
...

1 1 1

0 0 1

1 0 0

0 1 1

1 1 0

… … …

0 1 0

1 0 0

0 1 1

1 0 1

1 0 0

… … …

0.4 0.6

Weighted Query

1 0 0 1 1 0

1 1 1 0 0

0 0 1 0 0

1 0 0 0 0

0 1 1 0 0

1 1 0 0 0

… … … … …

0 1 0 0

1 0 0 0

0 1 1 0

1 0 1 0

1 0 0 0

… … … …

0 1 0 0 0

1 0 0 0 0

0 1 1 0 0

1 0 1 0 0

1 0 0 0 0

… … … … …

Data and query in decimal

Data and query in binary

+ +

1 0 1 0 0 0

0 1 1 1 0 0

1 0 0 0 1 0

1 0 1 0 1 0

1 1 0 0 0 0

… … … … … …

=

Addition using BSA

1 0 1 0 0 0

0 1 1 1 0 0

1 0 0 0 1 0

1 0 1 0 1 0

1 1 0 0 0 0

… … … … … …

0

0

0

1

1

…

Top-2

Return result

Accumulator

1

2

3

4

5

6

78

9

10

Addition using BSA

Figure 4.5: Example of BSI Arithmetic applied for finding top-2 tuples given a weighted
preference query.

To evaluate the performance of the preference queries over the BSI index,

we compared our approach with a sequential scan approach and the Sequential

Top-k Algorithm (STA) [45]. The results are shown in Figure 4.6. More details

regarding the experimental setup and dataset descriptions are provided in [44]. As

www.manaraa.com

77

the figure shows, increasing k when extracting top-k candidates, does not impact

significantly the query time for BSI. In fact, the query time increases by only 0.01 -

0.03ms when changing k = 10 to k = 1000 for all four datasets.

The reason is that the top K BSI algorithm is only invoked once after the

scores for all the tuples have been computed. As expected, SS and STA perfor-

mance increases linearly with k.

0

0.5

1

1.5

2

2.5

top-20 top-50 top-100 top-1K

Q
u

er
y

Ti
m

e
(m

s)

K

BSI SS STA

(a) coil2000 dataset. (Rows: 9822, At-
tributes: 86).

0

0.5

1

1.5

2

2.5

top-20 top-50 top-100 top-1K

Q
u

er
y

Ti
m

e
(m

s)

K

BSI SS STA

(b) internet dataset. (Rows: 10104, At-
tributes: 72).

0

1

2

3

4

5

top-20 top-50 top-100 top-1K

Q
u

er
y

Ti
m

e
(m

s)

K

BSI SS STA

(c) kegg-metabolic dataset.(Rows:
53413, Attributes: 24).

0

20

40

60

80

100

120

top-20 top-50 top-100 top-1K

Q
u

er
y

Ti
m

e
(m

s)

K

BSI SS STA

(d) poker-hand dataset. (Rows:
1,000,000; Attributes: 11).

Figure 4.6: Top-k weighted query on real data (K= 20 - 1,000).

In the BSI index the attributes are indexed independently, this technique

for processing preference queries can take advantage of the columnar storage and

www.manaraa.com

78

have the potential to be executed in parallel. We introduce several algorithms for

processing top-k, and top-k weighted queries while exploiting the fast bit-wise

operations enabled by the BSI index [44]. This approach is robust and scalable for

high dimensional data. In our experimental evaluation we show that by increasing

the dimensionality of the data, BSI query times increase only linearly-proportional

to the number of attributes added. Moreover, the distribution of the data does

not affect the query performance for BSI, while TA and other threshold algorithms

using sorted lists are very sensitive to data distribution.

In the next section we define algorithms to perform parallel aggregations

over the BSI index in a distributed environment. Efficient aggregations are very

important for queries such as K-NN, collaborative filtering, and top-K preference

queries. We execute these queries using the MapReduce paradigm.

www.manaraa.com

79

CHAPTER 5
DISTRIBUTED BIT-SLICED INDEX

In the previous chapter it was showed that the bit-sliced index (BSI) is scal-

able for high-dimensional data and showed to outperform existing approaches for

answering top-k preference queries. Due to independently indexed dimensions

and no need for sorting, the BSI index can also be efficiently partitioned. The

horizontal and vertical partitions are straight forward, assuming that the verti-

cal partitions store whole attributes. However, we go a step further and break the

attributes by vertical slicing, and store the bit-slices into partial BSI attributes. By

doing so we enable for a finer control over the task parallelism, load balancing and

network communication when answering queries using the distributed BSI index.

Additionally, each bit-slice is compressed using the hybrid compression method

described in the previous chapter. The compression further reduces the size of the

index and, which translates into less memory consumption and network commu-

nication.

5.1 Structure of the distributed BSI index

Let us denote by Bi the bit-sliced index (BSI) over attribute i. A number of

slices s is used to represent values from 0 to 2s − 1. Bi[j] represents the jth bit in

the binary representation of the attribute value, and it is a binary vector containing

n bits (one for each tuple). The bits are packed into words and each binary vector

encodes ⌈n/w⌉ words, where w is the computer architecture word size (64 bits in

www.manaraa.com

80

our implementation). The BSI can be also compressed using the hybrid approach

described in the previous section.

For every attribute i in R we create a Bit-sliced index Bi. In this work we

want to address the problem of handling large datasets that do not fit into the

memory of a single machine, and thus the BSI index has to be partitioned and

distributed across the nodes of a cluster. With this goal in mind, we create a

BSIattribute class that can serve as a data structure for an atomic BSI element

included in a partition. Each partition can include one or more BSIattribute ob-

jects. A BSIattribute object can represent all tuples of a attribute (in the case of

vertical-only partitioning) or only a subset (in the case of horizontal, or vertical and

horizontal partitioning). Furthermore, a BSIattribute object can carry all of the at-

tribute bit-slices or only a part of them. In this case we would create a number of

partial BSIattributes each containing a subset of bit-slices from the BSIattribute

that they represent.

Figure 5.1 shows the structure of the BSIattribute class. The signed flag

marks if the numbers represented by the attribute are signed or not. In case the

attribute is signed and contains negative values, then it can be represented as two’s

complement or sign-magnitude, marked by the twosComplement flag. In this case

the instance represents a BsiSigned subclass.

The decimals field indicates the number of bits to the right of the decimal

point, these variables are used for the execution of BSI arithmetic operations such

as sum, difference and multiplication. The numSlices field stores the number of

www.manaraa.com

81

Figure 5.1: BsiAttribute class diagram.

www.manaraa.com

82

bit-slices contained in the bsi array. The offset represents the number of posi-

tions the bit-slices within this BSIattribute should be shifted to retrieve the actual

value. The partitionID field stores the sequence of the BSIattribute segment if

the attribute is horizontally partitioned. The partitionID together with the nRows,

which stores the number of rows in the BSIattribute segment, help mapping the

row IDs with the BSI values. The existenceBitmap is a bitmap that has set bits for

existing tuples and zero for deleted rows or for the non-existing rows correspond-

ing to the last bits in the BSI added to complete a full word.

Because each BSI attribute can be further partitioned vertically by mapping

bit-slices or groups of bit-slices, it is important to track the first and last bit-slice of

a BSI attribute that is partitioned using slice mapping. The containsLastSLice

flag helps identifying the vertical partition of a BSI attribute that contains the

last bit-slice. This helps while executing distributed operations for when sign

extension is necessary, as the last slice represents the sign slice. Similarly, the

containsFirstSLice indicates the presence of the first slice. The partition contain-

ing the first slice is handled differently in the case of negations or transformations

between two’s complement and sign-magnitude.

The BSIattribute class also contains methods for various operations be-

tween attributes and transformations of the attribute. Figure 5.1 shows only a few

of the methods that have been developed in our implementation.

www.manaraa.com

83

5.2 Partitioning of the BSI index

The data partitions, as well as the index partitions, are stored on a Dis-

tributed File System (DFS) that is accessed by a cluster computing engine. We

implemented the distributed BSI arithmetic (summation and multiplication) on

top of Apache Spark, and used its Java API to distribute the workload across the

cluster.

Figure 5.2: Example of vertical and horizontal partitioning of a BsiAttribute.

www.manaraa.com

84

An example of how a BSI attribute can be partitioned and how some of the

fields shown in Figure 5.1 are used to keep record of the resulting partitions, is

shown in Figure 5.2.

When creating the BSI index, it is worthwhile to co-locate both the data

partitions and index partitions on the same nodes. Co-locating the index and the

data partitions helps to avoid data shuffling during the index creation, and also

avoids network accesses, should the original data be accessed at any moment of

the query execution.

The BSI index, as defined in [15] is a vertically partitioned index. However

the bit-slices can also be segmented to allow for smaller index partitions that can

fit on a disk page and main memory. We call this type of segmentation horizontal

partitioning. In a distributed environment, the main concern is to minimize net-

work throughput, while maximizing the parallelism, and horizontal partitioning

can help in this regard.

Concatenation is straight forward, as each BSI in a partition has the same

number of bits corresponding to the same rowIds.

Algorithm 7 shows the pseudo-code for concatenating the resulting list of

BSI attributes in the case of vertical and horizontal partitioning. The concatenate()

operation on line 4 of the algorithm concatenates each bit-slice from t to the bit-

slices of finalSum, where t is the next segment of the horizontal split BSI attribute.

The existenceBitmap is also concatenated, and the number of rows in finalSum is

updated.

www.manaraa.com

85

Algorithm 7: Concatenation of BSI attributes from different horizontal partitions.
Input: List<BSIattribute> sumAtt
Output: BSIattribute finalSum

1 BSIattribute finalSum = new BSIattribute();
2 while sumAtt.hasNext() do
3 t = sumAtt.next();
4 finalSum.concatenate();
5 end
6 return finalSum

For queries involving all the attributes, as it is the case for topK queries,

it may be inefficient to index a single attribute per partition. This would mean

that all the index data would be shuffled during aggregation. On the other hand,

grouping too many BSI attributes together creates very large partitions that may

not fit into the nodes main memory. Hence, horizontal partitioning of the bit-slices

can help lower the partition sizes, to allow for in-memory processing, while still

minimizing network throughput by grouping multiple attributes together.

5.3 Data encoding

In the first section of this chapter we showed that the signed and unsigned

attributes are treated differently. The signed data can be represented in two’s

complement encoding, which is suitable for addition and subtraction operations.

However, for multiplications it is often more efficient to represent the data as sign-

magnitude(i.e. only store the magnitude of the value, and keep record of the sign

in the sign bit-vector).

We created several procedures within our BSIattribute class that help with

www.manaraa.com

86

the transformation from one encoding to another.

The negatemethod changes the sign of each value encoded in theBSIattribute.

The resulting BSIattribute will always be a BsiSigned instance encoded as either

sign-magnitude or two’s complement.

The abs method returns the absolute values encoded in a BSI attribute. It is

always a instance of the BsiUnsigned subclass.

Within the BsiSigned subclass there are two possible transformations that

will change the encoding of the attribute: toSignMagnitude and toTwosComplement.

These methods transform the encoding from two’s complement to sign-magnitude

and vice versa.

Algorithm 8: Changes the encoding from sign-magnitude to two’s complement.
Input: BSIattribute

1 for i=0 to numSlices do
2 bsi[i]=bsi[i] XOR sign;
3 end
4 if lastSlice then
5 addSlice(sign);
6 end
7 if firstSlice then
8 addOneSlice(sign);
9 end

10 setTwosFlag(true);

When operating BSI attributes encoded in two’s complement, there is need

for sign extension. However, because the attributes are often partitioned vertically,

only the partitions containing the last slice (i.e. sign slice) should be sign extended.

www.manaraa.com

87

Similarly, when changing the encoding from sign-magnitude to two’s complement

and vice versa, after flipping the bits, only the partitions containing the first slice

will need the addition of the sign slice (Algorithm 8 line 8, and Algorithm 9 line 5).

Algorithm 9: Changes the encoding from two’s complement to sign-magnitude.
Input: BSIattribute

1 for i=0 to numSlices do
2 bsi[i]=bsi[i] XOR bsi[numSlices-1];
3 end
4 if firstSlice then
5 addOneSlice(sign);
6 end
7 setTwosFlag(false);

The unsigned BSI attributes don’t require special handling of the first and

last slices. Thus, every partition should be handled alike when performing parallel

arithmetic operations such as summations. However, if encoded in two’s comple-

ment, then the BSI arithmetic operations defined in [23] for centralized systems,

must be modified to apply the sign extension only to the partitions containing the

last bit-slice.

www.manaraa.com

88

CHAPTER 6
DISTRIBUTED QUERY PROCESSING

Implementing a centralized solution to a distributed environment presents

unique challenges. It is important to find a good balance between the task paral-

lization and network communication. Load balancing is important as well. For

example, in the case of summing BSI attributes in parallel for aggregation pur-

poses, some attributes can have a much higher cardinality than others. The nodes

operating those attributes can become strugglers, and impose a delay on the next

scheduled stage in the processing of the query.

In the next sections we present our solution for a distributed execution of

basic arithmetic over the BSI index and result aggregation across multiple dimen-

sions, which is critical for complex analytical queries such as preference queries,

K-NN (nearest neighbor), and collaborative filtering over the BSI index. We pro-

pose a two-phase map-reduce algorithm while grouping the BSIs by slice depth

for the aggregation. We then estimate the amount of network communication, and

define a number of parameters that should be taken into consideration given the

query, dataset, and the cluster infrastructure.

6.1 Distributed top-k queries using BSI indexing

The key idea behind this work is the parallelization of basic BSI arithmetic

operations, such as summation or multiplication. These operations and their algo-

rithms on a centralized system are described in [23].

www.manaraa.com

89

In this work we perform the top-k (preference) queries by executing the

following steps:

1. First we apply the set of weights defined as the query preferences Q. These

weights are applied in parallel for each dimension.

2. Then we aggregate the summation result across all dimensions in parallel.

We propose a two-phase MapReduce algorithm that uses the bit-slice depth

for mapping.

• Map the bit-slices encoding the weighted dimensions to different map-

pers. The mapping key is the bit-slice depth within the attribute.

• Aggregate locally the bit-slices by adding together all the bit-slices with

the same depth from the same node, and obtain a partial sum BSI for

every depth.

• Complete the computation of the BSI sum by depth by shuffling and

aggregating the partial sums.

• Aggregate all the partial sums BSI by depth into one final aggregated

BSI.

3. Finally, we apply the top-k algorithm over the resulting BSI using the al-

gorithms showed in [23], [46]. This can be done on the master node, or in

parallel, by splitting the sum attribute horizontally.

The proposed approach exploits the parallelism exhibited by the Bit-Sliced

www.manaraa.com

90

Index (BSI), and avoids sorting in MapReduce when retrieving top-k tuples. How-

ever, implementing a centralized solution to a distributed environment presents

unique challenges. For one, the BSI index can be partitioned vertically as well as

horizontally. The vertical partitioning can be done not just by splitting the colum-

nar attributes, but also by splitting the bit-slices within one attribute. The horizon-

tal partitioning of the BSI index can be done by segmenting the bit-slices within

the BSI.

For the top-k preference queries considered in this work, the top-k query

processing algorithm consists of two MapReduce phases. The steps of the top-k

preference query are depicted in Figure 6.1.

Figure 6.1: Top-k (preference) query stages using the two-phase BSI slice mapping method.

6.2 Distributed Nearest Neighbor queries using bit-vector indexing

6.2.1 K-NN queries using BSI indexing

Given a point in the feature space, the K-NN(nearest neighbor) query re-

turns k closest points from a data set. Since K-NN queries are often used in ma-

chine learning for classification purposes, these queries are often run against a

training data set. The k points returned by the query are then used to vote on

www.manaraa.com

91

predicting the class for the point of interest.

Similarly to the top-k preference queries, if no dimensionality reduction is

used, most existing data structures and indices used to answer K-NN queries fall

into the curse of dimensionality. They become slower than a sequential scan ap-

proach. Because the BSI index is often smaller than the raw data, it is worth con-

sidering a sequential scan approach on the BSI index to answer K-NN queries for

high dimensional data.

The steps required for answering the K-NN query over a BSI index are:

1. Compute the Manhattan distance between the query point and the indexed

points.

• Using the two’s complement encoding for the BSI index, compute in

parallel for every dimension the difference between the query point and

the data points.

• In parallel, extract the absolute value for the differences computed.

2. Aggregate point distances by executing the SUM operation.

3. Perform the top-k Min operation over the BSI attribute resulting from the

previous step.

Data domain characteristics may indicate that certain attributes are more

important than others in defining data object similarity. Applying different weights

to each attribute can be used to more accurately reflect the real-world similarity.

www.manaraa.com

92

This can be easily accommodated by including the multiplication by a constant,

defined in [23], into the proposed kNN computation.

6.2.2 Distributed K-NN queries using equality bitmap indexing

Another way of answering K-NN queries with the help of bit-vector indices

is by computing the Hamming distance [47] between different dimensions of the

query and data points. In this case an equality encoded bitmap [48] index would

be well suited as the index structure. The Hamming distance can be computed

by only accessing one bitmap per dimension (i.e. the bitmap encoding the value

corresponding to the query value).

6.2.3 Extended kNN-based queries

kNN over BSI indices can support powerful variations to the baseline simi-

larity search by combining the proposed approach with bitmap index functionality.

A number of these query types are described below:

Weighted Similarity Search

Data domain characteristics may indicate that certain attributes are more

important than others in defining data object similarity. Applying different weights

to each attribute can be used to more accurately reflect the real-world similarity.

This can be easily accommodated by including the multiplication by a constant

into the proposed kNN computation.

www.manaraa.com

93

Projected Similarity Search

Bitmaps maintain dimensional independence between attributes. This makes

it possible to compute the similarity only over some of the attributes. Therefore,

object similarity within a given subspace can easily be computed without any spe-

cial adaptation. In contrast to others multi-dimensional indexes that do not main-

tain dimensional independence, where similarity computations can not easily be

computed over a subset of the indexed dimensions. For example, if using Locality

Sensitive Hashing(LSH), every time a different projection is used, the hash tables

have to be re-computed.

Constrained Similarity Search

The proposed approach can be combined with traditional bitmap function-

ality seamlessly. Bitmaps are naturally suited to efficiently perform selection queries

over the attributes. Queries that are a combination of selection over a subset of

attributes and similarity over another subset of attributes is easily performed by

first performing the selection query to define those points that fall within the con-

straints (represented by an existence bitmap), and then compute the similarity for

this subset of points.

Complex Similarity Search

Complex similarity searches refer to queries with more than one reference

point. For example, a query that asks for images similar to a set of multiple ex-

amples. BSIs can be used to support such type of queries. The average distance

www.manaraa.com

94

between the points and each query can be computed independently for each di-

mension and then added together as the similarity measure. The query result cor-

respond to those objects with the greatest total similarity to the set of query objects.

6.3 Distributed aggregation using the BSI index

The most important step in answering complex queries in a distributed en-

vironment is the parallel operation execution result aggregation. There are mul-

tiple ways one can implement aggregations in map-reduce, and thus we describe

three possible approaches, and then focus on the optimized method that is a two-

phase map-reduce algorithm which uses bit-slice depth keys for mapping and then

reducing keys.

6.3.1 BSI tree reduction aggregation

The simplest way to implement an aggregation in MapReduce is to use a

tree-like reduction to add every pair of BSI attributes in parallel using ⌈log2m⌉ re-

duce rounds, where m is the number of attributes in the dataset. For clarity, in

each “round,” the reduced output is fed into another iteration of map() and re-

duce(). The pseudo-code for this simple approach is provided in Algorithm 10,

and as can be seen, a few lines of code can achieve this parallelization.

However, let us further evaluate this approach through an example. Con-

sider a dataset with m = 128 attributes and a Hadoop cluster with 10 nodes. The

aggregation would require 7 reduce rounds. The map tasks are trivial and simply

emit the input data to the reduce tasks. The first round requires 64 reduce tasks,

www.manaraa.com

95

and each subsequent round requires just half of the previous. Since the output of

each round is used as the input for the next round, a large amount of data may need

to be shuffled between nodes. It is also possible that stragglers or “lazy” nodes can

slow down computation. Moreover, as the number of reduce tasks drops below

the number of nodes, not all nodes can be used in the computation. Figure 6.2 il-

lustrates an example of tree aggregation and the nodes involved in the aggregation

at different stages.

Considering these limitations, we optimize this parallel SUM BSI to reduce

the amount of data shuffled and the number of rounds needed to reduce the tree.

We call this optimization the SUM BSI Group Tree Reduction and describe it in

detail in the next subsection.

Algorithm 10: Tree reduction for BSI aggregation.
Reduce():
begin

Input: RDD<BSIAttr> pSum1, pSum2
Output: RDD<BSIAttr> sumAtt

1 sumAtt = pSum1.SUM-BSI(pSum2);
2 return sumAtt

end

6.3.2 BSI group-tree reduction aggregation

To minimize the number of partial BSIs generated and shuffled between

nodes, we take advantage of data locality. Because each task node typically also

www.manaraa.com

96

Figure 6.2: Aggregation using a single round tree reduction with the BSI sum operator.

serves as a data-node, we first aggregate a group of BSIs locally within each node.

Next, we aggregate the partial results using the previous tree reduction. The size

of the group is limited by the number of attributes in a partition and never exceeds

it. Figure 6.3 shows the two rounds of aggregation, and how the data shuffle is

reduced by “forcing” the first round to be performed on a local level first. The

pseudo-code is listed in Algorithm 11

Consider again our previous example of a dataset with m = 128 attributes,

and a 10 node cluster. If we define groups of size p = 13, then each node will add

13 BSIs (except for the last node, which adds 11 BSIs for a total of 128) in parallel.

www.manaraa.com

97

Algorithm 11: Group tree BSI aggregation.
Map(): //Maps attributes by their assigned executor (location)
begin

Input: RDD<BSIAttr> indexAtt //BSIAttr
Output: RDD<Integer, BSIAttr> byExecutor

1 int executorID= assignExecutor();
2 return new Tuple(executorID, indexAtt)

end
ReduceByKey()://Group(local) aggregation
begin

Input: RDD<Integer, BSIAttr> byExecutor1, byExecutor2
Output: RDD<Integer, BSIAttr> pSum

3 pSum = byExecutor1.SUM-BSI(byExecutor2);
4 return pSum

end
Map():
begin

Input: RDD<Integer, BSIAttr> pSumByExecutor
Output: RDD<BSIAttr> pSum

5 pSum = pSumByExecutor. 2();
6 return pSum

end
Reduce()://Final aggregation
begin

Input: RDD<BSIAttr> pSum1, pSum2
Output: RDD<BSIAttr> sumAtt

7 sumAtt = pSum1.SUM-BSI(pSum2);
8 return sumAtt

end

This produces 10 partial BSIs that can be reduced using the tree reduction in just

⌈log2 10 = 4⌉ rounds.

With this approach, the second phase must wait for the results from the first

phase before starting. However, by reducing the height of the tree and therefore

the network communication cost, we can still reduce the overall execution time.

The biggest problem with this algorithm is the lack of load balancing. The number

www.manaraa.com

98

Figure 6.3: Aggregation using a two round group-tree reduction with the BSI sum operator.

of slices used for each attribute needs not to be the same, which in turn translates

into variable execution times for adding a group of BSI attributes. Furthermore,

with smaller numbers of partial products (e.g. one for each executor), not all the

nodes are busy during the tree reduction.

In order to achieve load balancing, we should exploit the fact that each bit-

slice is stored column-wise and make the bit-slices, not the attributes, the working

units. Our proposed approach using the bit-slice depth as the mapping key is

described next.

www.manaraa.com

99

6.4 BSI two-phase slice mapping for distributed aggregations

It is true that the compact representation of the BSI makes the algorithms

described in the previous two sections highly competitive versus their array coun-

terparts. However, most of their performance gains, if not all, come from the re-

duced size of the BSI, and not necessarily because the algorithms are efficient. In

this section, we propose a aggregation algorithm that promotes the bit-slices as the

processing data units and applies the lessons-learned in computer arithmetic opti-

mization to further improve the performance of the parallel aggregation. The basic

idea of this approach lies in use the bit-slice depth as the mapped key and imple-

ment a two-phase algorithm, shown in Figure 6.4. In the first phase, the slices are

added by bit-depth, producing a weighted partial sum BSI. In the second phase,

all the partial sums are added together in a method similar to a carry-save adder.

Consider again our running example where m = 128 attributes are added

using 10-nodes. Let us now assume that each attribute’s value is within 1M = 220,

so every attribute i can be further partitioned into a set of 20 vertical bit-slices:

{Bi[d] ∣ 19 ≥ d ≥ 0}. In the proposed two-phase algorithm, the first task is to

map all the bit-slices with the same depth (d) to a single node. Then addition is

performed over 128 BSIs containing only 1 slice each, producing 20 partial sum

BSIs. Each partial sum is in the range [0,128] and would require at most 8 slices.

Next, these partial sums are added using their original depth d as their “weight.”

For example, the partial sum for the bit-slices of depth d = 2 would have a weight

of 2d = 4. Because the weight is always a power a 2, this weighting scheme can

www.manaraa.com

100

be done efficiently by bit-shifting. Since the BSIs are stored column-wise, this shift

can be represented using an offset and never materialized.

It is also possible to perform the parallel aggregation using groups of bit-

slices to reduce data shuffling. In the previous example, with a group size of g = 2,

we could have slices 0 and 1 from all 128 attributes added together in the same

node during the first stage. This ability to group the slices and divide the attributes

(e.g., half of the depth 0 slices added in one node and the other half in another),

allows us to balance the load and keep all the nodes busy longer. In the remainder

of this section, we formalize the proposed two-phase algorithm and analyze its

cost in Section 6.5.

For clarity in describing our algorithms, we use the example illustrated in

Figure 6.4. In the first MapReduce phase, every BSI attribute has its slices mapped

locally to different mappers based on their depth d. The splitting of the BSI at-

tribute in individual bit-slices allows for a finer granularity of the indexed data

and for a more efficient parallelism during the aggregation phase. The pseudo-

code of the mapping step is shown in the first Map() function of Algorithm 12.

Every mapper has a BSIAttr (containing multiple slices) as input, and outputs a

set of BSIAttrs that contain one bit-slice each. These bit slices are mapped by their

depth in the input BSIAttr. Although there is an overhead associated with encap-

sulating each bit-slice into a BSIAttr, by creating a higher level of parallelism, we

also achieve better load balancing and resource utilization.

Still in the first phase, the aggregation is done by the ReduceByKey() func-

www.manaraa.com

101

0
1
1
1
0

1
0
1
1
1

1
0
1
0
0

0
0
0
1
0

0
1
0
0
1

0
1
1
1
0

B3 B2 B1 B0

B3

B3 B2 B1 B0

B3

+ =

0
1
0
0
0

0
0
1
1
1

B3[1] B3[0]

0
0
0
1
1

1
0
1
1
1

B2 B2

+ =

0
0
0
1
1

1
0
1
0
0

B2[1] B2[0]

1
0
0
0
0

1
0
1
0
0

B1 B1

+ =

1
0
0
0
0

0
0
1
0
0

B1[1] B1[0]

0
0
0
1
0

1
0
1
0
0

B0 B0

+ =
1
0
1
1
0

B0[0]

0
1
0
0
1

0
0
0
1
1

1
0
0
0
0

1
0
1
0
0

...

Map() ReduceByKey()

Phase I

attr 1

attr 2

0
1
0
1
1

1
0
1
0
0

0
0
1
0
0

0
0
1
0
0

1
0
1
1
0

Reduce()

Phase II

Map()

0
1
0
0
0

0
0
1
1
1

0
0
0
1
1

1
0
1
0
0

1
0
0
0
0

0
0
1
0
0

1
0
1
1
0

B0[0]

B3[1] B3[0]

B2[1] B2[0]

B1[1] B1[0]

0
1
0
1
1

Top 3
results

Figure 6.4: SUM BSI Using Slice Mapping Example.

tion of Algorithm 12. In this step, all the bit-slices with the same key (depth) are

aggregated into aBSIAttr. Line 9 of Algorithm 12 performs the summation of two

BSIs. We use the same addition logic as the authors in [23]. However, we achieve

a parallelization of the BSI summation algorithm by splitting the BSIAttr into in-

dividual slices and executing their addition in parallel similarly to a carry-save

adder. The offset of the resulting BSIAttrs are saved in the offset field of each

BSIAttr object to ensure the correctness of the final aggregated result. Apache

Spark optimizes the summation by aggregating the bit-slices on the same node

first, then on the same rack, and then across the network. Thus, trying to minimize

the network throughput. The aggregation by depth is done locally first.

www.manaraa.com

102

After aggregating partial local results, the second MapReduce phase initi-

ates to complete the aggregation by depth through shuffling the partial sums and

reducing by their depths. The final step of the aggregation is done by reducing all

the BSIs (pSum) produced in the previous ReduceByKey() stage, regardless of their

key. The final result (attSum) of this reduce phase is a single BSI attribute in the

case of vertical only partitioning, or a set of BSI attributes, that should be concate-

nated, in the case of vertical and horizontal partitioning. Concatenation is straight

forward, as each BSI in a partition has the same number of bits corresponding to

the same rowIds.

6.5 Cost estimations for two-phase map-reduce BSI aggregation

As showed in the work that uses the BSI index for top-K queries on single

machines [44], the query time is dominated by aggregation. Thus, in this section

we focus on estimating the complexity of the two-phase map-reduce aggregation,

and the amount of data shuffling that it generates in a distributed environment. In

this section we estimate the network data shuffle, and time complexity per hori-

zontal partition. This estimation should be applied for each horizontal partition.

6.5.1 Data shuffle estimation

The mapping in the first phase (Figure 6.4), does not produce any shuffling

since it aggregates only the slices from attributes found on the same node.

The mapping in the first phase (Figure 6.4), does not produce any shuffling

since it aggregates only the slices from attributes found on the same node. Data

www.manaraa.com

103

Algorithm 12: Two phase distributed BSI aggregation by slice depth.
Map(): //Map slices by depth
begin

Input: RDD<BSIAttr> indexAtt
Output: RDD<Integer, BSIAttr> byDepth

1 int sliceDepth=0;
2 while indexAtt has more slices do
3 bsi = new BSIAttr();
4 bsi.add(indexAtt.nextSlice());
5 byDepth.add(new Tuple(sliceDepth, bsi));
6 sliceDepth++;
7 end
8 return byDepth

end
ReduceByKey()://Reduce by depth - first reduce phase
begin

Input: RDD<Integer, BSIAttr> byDepth1, byDepth2
Output: RDD<Integer, BSIAttr> pSum

9 pSum = byDepth1.SUM-BSI(byDepth2);
10 return pSum

end
Map():
begin

Input: RDD<Integer, BSIAttr> partSum
Output: RDD<BSIAttr> pSum

11 pSum = partSum. 2();
12 return pSum

end
Reduce(): //Second reduce phase
begin

Input: RDD<BSIAttr> pSum1, pSum2
Output: RDD<BSIAttr> sumAtt

13 sumAtt = pSum1.SUM-BSI(pSum2);
14 return sumAtt

end

www.manaraa.com

104

shuffling occurs twice in our two-phase MapReduce aggregation. The first time is

between the reducers of phase 1 and the mappers of the phase 2, and the second

time data is shuffled between the mappers and reducers of the second phase. The

amount of data shuffled depends on the number of nodes, partitions, tasks (or the

number of attributes per task), and the number of slices per group. The number of

slices per group can vary from 1 to s, where s is the highest number of slices per

attribute in the dataset. In Figure 6.4 the slices are mapped into groups of one.

In order to determine the amount of data shuffled between the reducers of

phase 1 and the mappers of phase 2, we should find first the number of outputs

created by the reducers of phase 1. Given m attributes with s maximum slices

per attribute, a attributes per node, and g slices per group, each node produces s
g

partial aggregations by depth. The size of each of these partial aggregations is in

the worst case:

⌈log2(g + a)⌉ (6.1)

This represents the number of slices each partial aggregation by depth con-

tains after the reduce phase 1. The total number of slices shuffled at this stage

is:

Sh1 = [(min(⌈s
g
⌉, ⌈m

a
⌉) − 1] ⋅ ⌈m

a
⌉ ⋅ ⌈log2(g + a)⌉ (6.2)

The mappers of the second phase produce s
g outputs, each with the size:

⌈log2(g + a)⌉ + ⌈log2(
m

a
)⌉ = ⌈log2

(g + a)m
a

⌉ (6.3)

www.manaraa.com

105

The total number of slices shuffled between the mappers and reducers of

the second phase is:

Sh2 = (⌈s
g
⌉ − 1) ⌈log2

(g + a)m
a

⌉ (6.4)

The total amount of data shuffled is the sum of the results from Equa-

tions 6.2 and 6.4:

Sh = Sh1 + Sh2. (6.5)

The size of each bit-slice is given by the number of rows in each horizontal

partition. If compression is applied, then bit-vector size estimation techniques such

as in [43] should be considered in estimating the size of the bit-slices.

6.5.2 Time Complexity Analysis

Based on our estimations from the previous sub-section, the amount of data

shuffled decreases as g - the number of slices per group increases, or as a - the num-

ber of attributes per node increases. However, less data shuffling means a higher

load on individual tasks. We further analyze the time complexity for each indi-

vidual task, and its impact on the total query time in the two-phase MapReduce

aggregation.

The cost of summing two BSI attributes is linear on the number of slices and

the number of rows in the attributes. If p is the number of slices of the attribute

with a higher number of slices, then the cost of adding the two attributes is equal

to the cost of executing p bitwise logical operations between two vectors. Given

that the number of slices per group is a constant, g is the number of slices for

www.manaraa.com

106

each depth-shifted attribute in the reduce phase 1. Adding all the depth-shifted

attributes within one node has the following complexity:

T1 =
log2 a

∑
i=1

(g + i). (6.6)

There are m
a partial sums with the same key per task, to complete the aggre-

gation of partial sums shifted by depth. Thus the cost of this aggregation is:

T2 =
⌈log2m/a⌉
∑
i=1

(g + ⌈log2 a⌉ + i) (6.7)

Finally, the cost of aggregating the partial sums shifted by depth into one

final attribute, is given by:

T3 =
⌈log2 s/g⌉
∑
i=1

(g + ⌈log2 a⌉ + ⌈log2
m

a
⌉ + i) (6.8)

When taking into consideration the time complexities from Equations 6.6,

6.7, and 6.8, one must account for the different number of tasks executed in these

three steps. For example, if T1 has a weight of one, i.e. WT1 = 1, then the number of

tasks for T2 and T3 is different. For WT1 = 1, the weight for T2 is:

WT2 =
1

⌈ma ⌉
(6.9)

since there are fewer tasks for T2 than T1 by a factor of m
a . While the weight

www.manaraa.com

107

for T3 is:

WT3 =
1

⌈ma ⌉⌈
s
g ⌉

(6.10)

In this case, there are s/g fewer tasks than in the previous step.

Using the time complexities discussed above, together with the data shuffle

estimations, it is possible to find the optimum values for the number of slices per

group (g) and the number of initial tasks/attributes per task.

6.6 Evaluation of the two-phase map-reduce distributed BSI aggregation

method

6.6.1 Scalability of the proposed indexing and querying approach

We test the scalability of the proposed two-phase slice-mapping for aggre-

gation (Slice BSI) in terms of query time as data dimensionality and the number of

computing nodes/CPU cores increases, as well as for increasing data cardinality.

Given that the BSI index is sensitive to data cardinality, we set up to mea-

sure the scalability of the two-phase slice-mapping aggregation algorithm when

compared to the BSI tree-reduction and the two-round BSI tree-reduction (BSI

group) methods. We also compare with a map-reduce method for aggregation

implemented in Spark, that is similar to the Tree BSI without using the BSI index

(Spark). Figure 6.5 shows the query times for sum aggregations when varying the

data cardinality from 103 to 1018, using from 10 to 64 bit-slices per attribute. As

the figure shows, the Slice BSI method is up to two times faster than the other BSI

methods, and up to 20X faster than the non BSI method for lower cardinality. The

www.manaraa.com

108

0

10

20

30

40

50

10^3 10^6 10^9 10^12 10^15 10^18

ti
m

e
(s

)

Cardinality
Spark Tree BSI Group BSI Slice BSI

Figure 6.5: Aggregation query time with increasing data cardinality.(Synthetic dataset, uni-
formly distributed data over 260 attributes and 5 Million rows).

non BSI method is not sensitive to data cardinality.

Figure 6.6 shows the performance of the two-phase map-reduce for aggre-

gations (Slice BSI) method against the two other BSI methods and the non-BSI

method when increasing the number of rows. Slice BSI consistently outperforms

the other approaches. However, another useful insight that can be collected from

this experiment is that the time per row starts to increase once we reached 8 Million

rows per partition (2.2 s/1M rows for 8M rows per partition vs. 1.9s/1M rows for

4M rows per partition). A potential explanation could be the limited CPU cache

size. Partition size should be determined by considering the CPU cache size on the

cluster, which should be subject to future research.

Figure 6.7 shows the Slice BSI aggregation times over the Rainfall1 dataset

as the number of dimensions increases from 2,000 to 8,758. The results are shown

1http://www.emc.ncep.noaa.gov/mmb/ylin/pcpanl/stage4/

www.manaraa.com

109

0

20

40

60

80

100

1M 2M 4M 8M

Ti
m

e
(s

)

Number of rows

Spark

Tree BSI

Group BSI

Slice BSI

Figure 6.6: Aggregation performance for varying the number of rows. (Synthetic dataset,
uniformly distributed data over 260 attributes with cardinality 1012).

for 12, 24, 36, and 48 CPU cores allocated by the resource manager. Considering

the available hardware infrastructure, we increase the number of CPU cores by 12

at a time (each datanode features 12 CPU cores). For this experiment we used a

number of 25 bit-slices per dimension. Figure 6.7 shows good scalability of the

two-phase slice-mapping algorithm, in terms of increasing data dimensionality,

and in terms of increasing the number of CPU cores.

The Slice BSI method improves on the other two BSI methods by balanc-

ing the task complexity and the network communication. In the next section we

further investigate how the task granularity/partition size impacts the query time.

www.manaraa.com

110

5

10

20

40

2000 3000 4000 5000 6000 7000 8000 9000

Ti
m

e
(s

)

Number of dimensions
12 cores 24 cores 36 cores 48 cores

Figure 6.7: Aggregation using the Slice BSI method when varying the number of dimen-
sions and the number of executors(cpu cores) over the Rainfall dataset (Dataset: Rainfall,
25 bit-slices per dimension).

6.6.2 Evaluation of cost estimations

Evaluation of data shuffle estimations

To evaluate the data shuffle and aggregation time estimations described in

the previous sections, we use the Rainfall dataset with one horizontal partition. In

the case of multiple horizontal partitions, the estimations should be applied to each

horizontal partition. The size of each compressed bit-slice was computed using the

estimations described by [43], in the section referring to EWAH/WBC. The sizes

for the verbatim bit-slices is simply the number of bits given by the number of

rows.

Figure 6.8 shows the estimated data shuffled in MB and the measured data

shuffled when performing sum aggregations over the rainfall data. These mea-

surements are shown for different values of g - slices per group. The BSI index

www.manaraa.com

111

0

50

100

150

200

250

300

0 2 4 6 8 10 12 14 16 18 20

Sh
u

ff
le

(M
B

)

Slices per group
Estimated shuffle Measured shuffle

Figure 6.8: Estimated data shuffle compared to measured data shuffle, for the two phase
aggregation method. (Dataset: Rainfall data, 20 slices per attribute, index size: 9.8 GB,
index partitions: 94).

was partitioned into 94 vertical partitions. Both, the estimated data shuffle and the

measured data shuffle, present the same patterns when increasing g. As expected,

the estimated values are higher given that the equations described earlier reflect

the upper bounds for data shuffling.

Evaluation of query time estimations

In this section we estimate the aggregation times in the two-phase slice BSI

map-reduce method, when varying the number of bit-slices per group (g). The pur-

pose of this experiment is to validate our estimations from earlier, and to develop

a technique for finding the optimum value for g, prior to running any queries.

The exact query times depend on the hardware deployed for running the

two-phase map-reduce method for aggregation. Thus in this section we normalize

www.manaraa.com

112

the estimated and measured query times to present them on a scale from 0 to 1,

using the following equation:

Norm(ei) =
ei −Emin

Emax −Emin
, (6.11)

where Emin is the minimum value for series E and Emax is the maximum

value for series E.

There is a trade-off between parallelism and network communication when

executing this aggregation. Thus we estimate the query time based on both, data

shuffle estimations and the time complexity estimations per task described in Sec-

tion 6.5.

Time = Norm(Shi) +Norm(Ti), (6.12)

where

T =WT1T1 +WT2T2 +WT3T3. (6.13)

Sh, WT1 , T1, WT2 , T2, WT3 , and T3 are defined in Section 6.5.

The results of this experiment are shown in Figure 6.9. In this case the op-

timum number of slices per group during the map-reduce phase is four, and the

estimation also indicated that 4 slices per group would give the fastest result. It

is worth noting that the estimated time does not consider the overhead associated

with map-reduce scheduling and synchronization. Our goal is not to predict exe-

www.manaraa.com

113

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10 12 14 16 18 20

N
o

rm
al

iz
ed

 t
im

e

Slices per group
Normalized estimated time Normalized measured time

Figure 6.9: Estimated execution time compared to measured execution time, for the two-
phase slice-mapping aggregation method. (Dataset: Rainfall data, 20 slices per attribute,
index size: 9.8 GB, index partitions: 94).

cution time, but rather decide on the values of the run-time parameters that would

offer the best trade-off between parallelism and network bandwidth.

In addition to the number of slices per group, using these estimations one

can also tune a, the number of attributes per partition. By controlling the number

and the size of partitions, one can increase or decrease the network communica-

tion, and also the load on each individual task.

6.6.3 Comparison against existing distributed data stores

To validate the effectiveness of the proposed index and query algorithms,

we compare our query times against SparkSQL and Hive on Tez, and Hive on

Hadoop Map-Reduce. We performed the top-k non-weighted preference query

over the HIGGS dataset 5 times and averaged the query times. We also gener-

www.manaraa.com

114

ated 5 random sets of weights with a 3 decimal precision and another 5 random

sets of weights with a 6 decimal precision. We ran these queries on the proposed

distributed BSI index, Hive on Hadoop MapReduce (MR), and Hive on Tez. We

loaded the HIGGS dataset attribute values into Hive tables as float numbers. For

the BSI index, we used 32 bit-slices per attribute to have a fair comparison against

Hive and SparkSQL.

The query ran on Hive has the following syntax:

SELECT RowID,

(column1*weight1 +...+ columnN*weightN)

as ‘AttributeSUM’ FROM table

ORDER BY AttributeSUM DESC LIMIT k

Figure 6.10 shows the query times of these top-k weighted and non-weighted

queries against SparkSQL, Hive on Hadoop MR, Hive on Tez and the distributed

BSI index. The results show that the BSI on Spark was 25 times faster than Spark-

SQL and one order of magnitude faster than Hive.

On this experiment, SparkSQL is slower than Hive on Hadoop MR and

Hive on Tez because of some inefficiencies in its shuffle phase, one of which is the

lack of shuffle file consolidation, as described in [49]. However, SparkSQL should

see some improvements in the more recent releases. It is worth noting that BSI on

Spark and SparkSQL use the same computation engine for distributing the work

across the cluster.

We have laid the foundation for a distributed query engine using bitmap-

based indices. Our goal is to further extend the BSI arithmetic using distributed

algorithms to support more operations and to provide accurate estimations of their

www.manaraa.com

115

0

20

40

60

80

100

120

Spark SQL Hive on Tez
(cold)

Hive on Tez
(warm)

Hive on
Hadoop MR

BSI on Spark

Ti
m

e
(s

)

Boolean preference query
Weighted pref. query (3 dec. weight)
Weighted pref. query (6 dec. weight)

Figure 6.10: BSI top-K preference and top-K weighted preference query time using BSI
slice-mapping compared to Hive on Hadoop map-reduce, and Hive on Tez (Dataset:
HIGGS, 32 bit-slices per dimension).

cost. Many other types of queries such as constraints top k, skyline queries, and

predictive queries can be supported as well.

www.manaraa.com

116

CHAPTER 7
CONCLUSIONS AND FUTURE WORK

In this work we propose a distributed indexing and scalable query process-

ing system for interactive Big Data explorations. Our indexing and query pro-

cessing layer is integrated with an open-source cluster computing engine and is

designed to handle large amounts of data. For indexing, we support traditional

bitmap indices as well as an enhanced BSI (bit-sliced index). Queries are executed

by operating vectors of bits in parallel.

For sparse bitmaps it is crucial to apply compression, thus we conduct a sur-

vey of the most popular bitmap compression methods. We propose a framework

for estimating the performance and choosing the best compression method given

a particular dataset. We improve existing word-aligned compression methods by

enabling compression using variable aligned lengths (VAL). In our experiments

we show that VAL can improve compression by up to 1.8 times and query times

by up to 30%.

However, the VAL framework was not able to improve the performance of

high-density bit-vectors such as the bit-sliced indices. The BSI index being a high

density bit-vector index, typically performs better without compression. Nonethe-

less, during the execution of complex data exploratory queries, when the query

answer is typically a very small portion of the data, the intermediate bit-vectors

become sparse and compressible. Thus, exploiting these opportunities for com-

pression can benefit the overall query speed and hardware resource utilization.

www.manaraa.com

117

With this in mind, we propose a hybrid compression framework that can improve

execution time of aggregations for preference queries over BSIs about 10%, and

with up to 11 times less memory utilization when compared to non-compressed

bit-vectors. In situations when memory availability is limited, the query times can

degrade substantially without using compression by producing many more disk

accesses.

In high-dimensional spaces, where traditional indexing and algorithms for

processing complex queries such as preference or nearest neighbor queries, fail to

scale and become slower than sequential scan approaches, we showed that by us-

ing BSI indices one can outperform sequential scan due to a smaller index size and

a more efficient CPU utilization. Moreover, because the BSI indexes each dimen-

sion independently, they are scalable for high-dimensional data, and thus suitable

for distributed settings.

We describe the structure of a distributed BSI index, that can be partitioned

horizontally as well as vertically. In conjunction with bitmap vectors, used to filter

data points, we describe how the distributed BSI can be used to answer complex

queries extensively used in big data analytics applications. Because efficient ex-

ecution of parallel BSI arithmetic operations and result aggregation is crucial, we

extend the BSI index to support parallel operations and aggregations. Using a two-

phase MapReduce algorithm for distributed arithmetic and result aggregations, to-

gether with fine control over the task sizes and network data shuffling, we aim for

more efficient hardware resource utilization and results in faster processing times

www.manaraa.com

118

for queries that seek to access to large amounts of data.

In a distributed computing system, there is always a tradeoff between par-

allelism and network communications. We analyze the costs for distributed op-

erations such as summations over the BSI index. The costs are defined in terms

of total CPU cost(level of parallelism) and network communication depending on

partition sizes and cluster hardware availability. We assume equal weights for

these two cost measures and optimize the partition size and group bit-slices into

partial BSI attributes that do not exceed the defined partition size. Depending on

the execution environment, the user can modify the weights for network commu-

nication or level of parallelism to achieve optimum performance.

Our contributions include important extensions to the bit-slices index in-

cluding partitioning and distributed query algorithms. Our preliminary results

show that the proposed approach outperforms Hive, a map-reduce based data

warehouse, over Hadoop Map-Reduce and the optimized query engine Tez, by at

least an order of magnitude in terms of execution time for preference queries. Fur-

thermore, experiments show a 25 times execution time improvement over Spark-

SQL, which uses the same distributed computation engine as the proposed ap-

proach.

As future work, the bit-vector based indices, have the potential to support

more types of queries used in data analysis and exploration applications, such as

constrained top-K queries, skyline queries, collaborative filtering, and others. The

library of supported operations can be expanded.

www.manaraa.com

119

We investigated and optimized the partitioning of the distributed BSI index

in terms of tradeoff between parallelism and network communication. A further

improvement in partitioning could potentially be considering the local CPU cache

size to determine more efficient horizontal partition sizes.

We showed that using compressed bit-vector indices, not only improves the

overall query speed, but also requires fewer computational resources. With this in

mind, there is further need for researching the energy usage of our algorithms.

Given our results, the intuition would be that using bit-vector indices can reduce

the electricity usage when compared to conventional methods used in most cloud

applications. Thus the proposed indexing and query processing layer in this dis-

sertation has the potential to reduce the power consumption in data centers that

specialize in mining of very large data.

www.manaraa.com

120

REFERENCES

[1] Abhinandan S. Das, Mayur Datar, Ashutosh Garg, and Shyam Rajaram.
Google news personalization: Scalable online collaborative filtering. In Pro-
ceedings of the 16th International Conference on World Wide Web, WWW ’07,
pages 271–280, New York, NY, USA, 2007. ACM.

[2] Vivien Marx. Biology: The big challenges of big data. Nature, 498(7453):255–
260, 2013.

[3] Chris A Mattmann. Computing: A vision for data science. Nature,
493(7433):473–475, 2013.

[4] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing
on large clusters. Communications of the ACM, 51(1):107–113, 2008.

[5] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: a flexible data processing
tool. Communications of the ACM, 53(1):72–77, 2010.

[6] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler.
The hadoop distributed file system. In Mass Storage Systems and Technologies
(MSST), 2010 IEEE 26th Symposium on, pages 1–10. IEEE, 2010.

[7] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A Wal-
lach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E Gruber.
Bigtable: A distributed storage system for structured data. ACM Transactions
on Computer Systems (TOCS), 26(2):4, 2008.

[8] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka,
Suresh Anthony, Hao Liu, Pete Wyckoff, and Raghotham Murthy. Hive: a
warehousing solution over a map-reduce framework. Proceedings of the VLDB
Endowment, 2(2):1626–1629, 2009.

[9] Jeff Shute, Radek Vingralek, Bart Samwel, Ben Handy, Chad Whipkey, Eric
Rollins, Mircea Oancea, Kyle Littlefield, David Menestrina, Stephan Ellner,
et al. F1: A distributed sql database that scales. Proceedings of the VLDB En-
dowment, 6(11):1068–1079, 2013.

[10] Michael Armbrust, Reynold S Xin, Cheng Lian, Yin Huai, Davies Liu,
Joseph K Bradley, Xiangrui Meng, Tomer Kaftan, Michael J Franklin, Ali Gh-
odsi, et al. Spark sql: Relational data processing in spark. In Proceedings of

www.manaraa.com

121

the 2015 ACM SIGMOD International Conference on Management of Data, pages
1383–1394. ACM, 2015.

[11] Ting Liu and Margaret Martonosi. Impala: A middleware system for manag-
ing autonomic, parallel sensor systems. In ACM SIGPLAN Notices, volume 38,
pages 107–118. ACM, 2003.

[12] Avinash Lakshman and Prashant Malik. Cassandra: structured storage sys-
tem on a p2p network. In Proceedings of the 28th ACM symposium on Principles
of distributed computing, pages 5–5. ACM, 2009.

[13] Patrick E O’Neil. Model 204 architecture and performance. In High Perfor-
mance Transaction Systems, pages 39–59. Springer, 1989.

[14] Patrick O’Neil and Goetz Graefe. Multi-table joins through bitmapped join
indices. ACM SIGMOD Record, 24(3):8–11, 1995.

[15] P.E. O’Neil and D. Quass. Improved query performance with variant indexes.
In Proceedings of the 1997 ACM SIGMOD international conference on Management
of data, pages 38–49. ACM Press, 1997.

[16] Roger Weber, Hans-Jörg Schek, and Stephen Blott. A quantitative analysis and
performance study for similarity-search methods in high-dimensional spaces.
In VLDB, volume 98, pages 194–205, 1998.

[17] Ratko Orlandic, Jack Lukaszuk, and Craig Swietlik. The design of a re-
trieval technique for high-dimensional data on tertiary storage. ACM SIG-
MOD Record, 31(2):15–21, 2002.

[18] Azza Abouzied, Kamil Bajda-Pawlikowski, Jiewen Huang, Daniel J Abadi,
and Avi Silberschatz. Hadoopdb in action: building real world applications.
In Proceedings of the 2010 ACM SIGMOD International Conference on Manage-
ment of data, pages 1111–1114. ACM, 2010.

[19] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and
Ion Stoica. Spark: cluster computing with working sets. In Proceedings of the
2nd USENIX conference on Hot topics in cloud computing, volume 10, page 10,
2010.

[20] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauley, Michael J. Franklin, Scott Shenker, and Ion Stoica. Re-
silient distributed datasets: A fault-tolerant abstraction for in-memory clus-
ter computing. In Proceedings of the 9th USENIX Conference on Networked Sys-

www.manaraa.com

122

tems Design and Implementation, NSDI’12, pages 2–2, Berkeley, CA, USA, 2012.
USENIX Association.

[21] Chee-Yong Chan and Yannis E. Ioannidis. An efficient bitmap encoding
scheme for selection queries. In Proceedings of the 1999 ACM SIGMOD inter-
national conference on Management of data, SIGMOD ’99, pages 215–226, New
York, NY, USA, 1999. ACM.

[22] Nick Koudas. Space efficient bitmap indexing. In Proceedings of the Ninth
International Conference on Information and Knowledge Management, CIKM ’00,
pages 194–201, New York, NY, USA, 2000. ACM.

[23] Denis Rinfret, Patrick O’Neil, and Elizabeth O’Neil. Bit-sliced index arith-
metic. In ACM SIGMOD Record, volume 30, pages 47–57. ACM, 2001.

[24] Ming-Chuan Wu and Alejandro P. Buchmann. Encoded bitmap indexing for
data warehouses. In ICDE ’98: Proceedings of the Fourteenth International Con-
ference on Data Engineering, pages 220–230, Washington, DC, USA, 1998. IEEE
Computer Society.

[25] G. Antoshenkov. Byte-aligned bitmap compression. In DCC ’95: Proceedings
of the Conference on Data Compression, page 476, Washington, DC, USA, 1995.
IEEE Computer Society.

[26] K. Wu, E. J. Otoo, and A.Shoshani. Compressing bitmap indexes for faster
search operations. In Proceedings of the 2002 International Conference on Scien-
tific and Statistical Database Management Conference (SSDBM’02), pages 99–108,
2002.

[27] K. Wu, E. J. Otoo, A. Shoshani, and H. Nordberg. Notes on design and im-
plementation of compressed bit vectors. Technical Report LBNL/PUB-3161,
Lawrence Berkeley National Laboratory, 2001.

[28] F. Deliege and T. Pederson. Position list word aligned hybrid: Optimizing
space and performance for compressed bitmaps. In Proceedings of the 2010 In-
ternational Conference on Extending Database Technology (EDBT’10), pages 228–
239, 2010.

[29] Francesco Fusco, Marc Ph. Stoecklin, and Michail Vlachos. Net-fli: On-the-fly
compression, archiving and indexing of streaming network traffic. Proceedings
of the VLDB Endowment, 3(2):1382–1393, 2010.

[30] Alessandro Colantonio and Roberto Di Pietro. Concise: Compressed ’n’ com-
posable integer set. Information Processing Letters, 110(16):644–650, 2010.

www.manaraa.com

123

[31] David Chiu Fabian Corrales and Jason Sawin. Variable length compresssion
for bitmap indices. In ACM International Conference on Database and Expert
Systems Applications, pages 381–395, 2011.

[32] Sebastiaan J. van Schaik and Oege de Moor. A memory efficient reachability
data structure through bit vector compression. In ACM SIGMOD International
Conference on Management of Data, pages 913–924, 2011.

[33] Kesheng Wu, Ekow J. Otoo, and Arie Shoshani. Optimizing bitmap indices
with efficient compression. ACM Trans. Database Syst., 31(1):1–38, March 2006.

[34] Burton H Bloom. Space/time trade-offs in hash coding with allowable errors.
Communications of the ACM, 13(7):422–426, 1970.

[35] Yuanyuan Tian, Tao Zou, Fatma Özcan, Romulo Goncalves, and Hamid Pira-
hesh. Joins for hybrid warehouses: Exploiting massive parallelism in hadoop
and enterprise data warehouses. pages 373–384, 2015.

[36] Peng Lu, Sai Wu, Lidan Shou, and Kian-Lee Tan. An efficient and compact
indexing scheme for large-scale data store. In Data Engineering (ICDE), 2013
IEEE 29th International Conference on, pages 326–337. IEEE, 2013.

[37] Jens Dittrich, Jorge-Arnulfo Quiané-Ruiz, Alekh Jindal, Yagiz Kargin, Vinay
Setty, and Jörg Schad. Hadoop++: making a yellow elephant run like a chee-
tah (without it even noticing). Proceedings of the VLDB Endowment, 3(1-2):515–
529, 2010.

[38] Gheorghi Guzun and Guadalupe Canahuate. Hybrid query optimization for
hard-to-compress bit-vectors. The VLDB Journal, pages 1–16, 2015.

[39] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S Mirrokni. Locality-
sensitive hashing scheme based on p-stable distributions. In Proceedings of the
twentieth annual symposium on Computational geometry, pages 253–262. ACM,
2004.

[40] Yinan Li and Jignesh M Patel. Bitweaving: fast scans for main memory data
processing. In Proceedings of the 2013 ACM SIGMOD International Conference
on Management of Data, pages 289–300. ACM, 2013.

[41] Gheorghi Guzun, Guadalupe Canahuate, Dereck Chiu, and Jason Sawin.
A tunable compression framework for bitmap indices. In Data Engineering
(ICDE), 2014 IEEE 30th International Conference on, pages 484–495. IEEE, 2014.

www.manaraa.com

124

[42] Daniel Lemire, Ownen Kaser, and Kamel Aouiche. Sorting improves word-
aligned bitmap indexes. Data and Knowledge Engineering, 69:3–28, 2010.

[43] Gheorghi Guzun and Guadalupe Canahuate. Performance evaluation of
word-aligned compression methods for bitmap indices. Knowledge and In-
formation Systems, pages 1–28, 2015.

[44] Gheorghi Guzun, Joel Tosado, and Guadalupe Canahuate. Slicing the di-
mensionality: Top-k query processing for high-dimensional spaces. In Trans-
actions on Large-Scale Data-and Knowledge-Centered Systems XIV, pages 26–50.
Springer, 2014.

[45] Wen Jin and Jignesh M. Patel. Efficient and generic evaluation of ranked
queries. In Proceedings of the 2011 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’11, pages 601–612, New York, NY, USA, 2011.
ACM.

[46] Denis Rinfret. Answering preference queries with bit-sliced index arithmetic.
In Proceedings of the 2008 C 3 S 2 E conference, pages 173–185. ACM, 2008.

[47] Richard W Hamming. Error detecting and error correcting codes. Bell System
technical journal, 29(2):147–160, 1950.

[48] Chee-Yong Chan and Yannis E. Ioannidis. An efficient bitmap encoding
scheme for selection queries. SIGMOD Rec., 28(2):215–226, June 1999.

[49] Aaron Davidson and Andrew Or. Optimizing shuffle performance in spark.
University of California, Berkeley-Department of Electrical Engineering and Com-
puter Sciences, Tech. Rep, 2013.

	Distributed indexing and scalable query processing for interactive big data explorations
	Recommended Citation

	tmp.1482252126.pdf.YwbMm

